人教A版高中数学必修1全套教案Word格式.doc
- 文档编号:15022653
- 上传时间:2022-10-26
- 格式:DOC
- 页数:56
- 大小:2.34MB
人教A版高中数学必修1全套教案Word格式.doc
《人教A版高中数学必修1全套教案Word格式.doc》由会员分享,可在线阅读,更多相关《人教A版高中数学必修1全套教案Word格式.doc(56页珍藏版)》请在冰豆网上搜索。
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:
课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征
(1)确定性:
设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:
一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:
构成两个集合的元素完全一样
5.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belongto)A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作aA(或aA)(举例)
6.常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N*或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1)列举法:
把集合中的元素一一列举出来,写在大括号内。
如:
{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
例1.(课本例1)
思考2,引入描述法
说明:
集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2)描述法:
把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:
在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
{x|x-3>
2},{(x,y)|y=x2+1},{直角三角形},…;
例2.(课本例2)
(课本P5最后一段)
思考3:
(课本P6思考)
强调:
描述法表示集合应注意集合的代表元素
{(x,y)|y=x2+3x+2}与{y|y=x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:
{整数},即代表整数集Z。
辨析:
这里的{}已包含“所有”的意思,所以不必写{全体整数}。
下列写法{实数集},{R}也是错误的。
列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(三)课堂练习(课本P6练习)
三、归纳小结
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
四、作业布置
书面作业:
习题1.1,第1-4题
课题:
1.2集合间的基本关系
类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
教学目的:
(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn图表达集合间的关系;
(4)了解与空集的含义。
子集与空集的概念;
用Venn图表达集合间的关系。
弄清元素与子集、属于与包含之间的区别;
五、引入课题
1、复习元素与集合的关系——属于与不属于的关系,填以下空白:
(1)0N;
(2)Q;
(3)-1.5R
2、类比实数的大小关系,如5<
7,2≤2,试想集合间是否有类似的“大小”关系呢?
(宣布课题)
六、新课教学
(一)集合与集合之间的“包含”关系;
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;
如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作:
读作:
A包含于(iscontainedin)B,或B包含(contains)A
当集合A不包含于集合B时,记作AB
用Venn图表示两个集合间的“包含”关系
B
A
(二)集合与集合之间的“相等”关系;
,则中的元素是一样的,因此
即
练习
结论:
任何一个集合是它本身的子集
(三)真子集的概念
若集合,存在元素,则称集合A是集合B的真子集(propersubset)。
AB(或BA)
A真包含于B(或B真包含A)
举例(由学生举例,共同辨析)
(四)空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(emptyset),记作:
规定:
空集是任何集合的子集,是任何非空集合的真子集。
(五)结论:
,且,则
(六)例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>
2},B={x|x5},并表示A、B的关系;
(七)课堂练习
(八)归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
(九)作业布置
1、书面作业:
习题1.1第5题
2、提高作业:
已知集合,≥,且满足,求实数的取值范围。
设集合,
,试用Venn图表示它们之间的关系。
1.3集合的基本运算
(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
集合的交集与并集、补集的概念;
集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
七、引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。
八、新课教学
1.并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
A∪B
A
A∪B 读作:
“A并B”
?
即:
A∪B={x|x∈A,或x∈B}
Venn图表示:
两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P9-10例4、例5)
连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:
在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2.交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
A∩B 读作:
“A交B”
即:
A∩B={x|∈A,且x∈B}
交集的Venn图表示
两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题(P9-10例6、例7)
拓展:
求下列各图中集合A与B的并集与交集
AB
A(B)
B
BA
当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
3.补集
全集:
一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。
补集:
对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementaryset),简称为集合A的补集,
CUA即:
CUA={x|x∈U且x∈A}
补集的Venn图表示
补集的概念必须要有全集的限制
例题(P12例8、例9)
4.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。
5.集合基本运算的一些结论:
A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A
AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A
(CUA)∪A=U,(CUA)∩A=
若A∩B=A,则AB,反之也成立
若A∪B=B,则AB,反之也成立
若x∈(A∩B),则x∈A且x∈B
若x∈(A∪B),则x∈A,或x∈B
6.课堂练习
(1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B=
(2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z
九、归纳小结(略)
十、作业布置
3、书面作业:
P13习题1.1,第6-12题
4、提高内容:
(1)已知X={x|x2+px+q=0,p2-4q>
0},A={1,3,5,7,9},B={1,4,7,10},且
,试求p、q;
(2)集合A={x|x2+px-2=0},B={x|x2-x+q=0},若AB={-2,0,1},求p、q;
(3)A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB={3,7},求B
1.2.1函数的概念
函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.
(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
理解函数的模型化思想,用合与对应的语言来刻画函数;
符号“y=f(x)”的含义,函数定义域和值域的区间表示;
十一、引入课题
1.复习初中所学函数的概念,强调函数的模型化思想;
2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 必修 全套 教案