数学建模 电梯调度问题4Word格式文档下载.docx
- 文档编号:14988773
- 上传时间:2022-10-26
- 格式:DOCX
- 页数:23
- 大小:167.30KB
数学建模 电梯调度问题4Word格式文档下载.docx
《数学建模 电梯调度问题4Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《数学建模 电梯调度问题4Word格式文档下载.docx(23页珍藏版)》请在冰豆网上搜索。
本文在假设高峰期内乘梯人群以一定的到达率到达乘梯起点前提下,采用电梯的平均载客量作为衡量标准。
对于第二个问题,本文采用分区调度的方法,将可能的方案按楼层分区的多少(分区数:
1~6)分为六类,综合运用各种规划方法计算出每个分区方案中最优的调度方案,再利用综合评价函数对这六个最优的调度方案进行评价,从而得出最终的最优调度方案;
在计算各类分区方案中最优的调度方案时,本文糅合了理想点法、线性加权法和最大最小法,并采用层次分析法计算出的权重将多目标规划问题转化为单目标规划;
在逐步分区讨论的过程中,本文采用动态规划的方法,在计算出第k类的最优方案的基础上再计算第k+1类的最优方案;
结果发现,在该简化模型的前提下,最优的调度方案是分为六区(具体分区见正文)
对于第三个问题,本文去掉了简化模型中“不考虑地下两层”这一假设,并考虑到“应优先满足高层的乘梯人员的乘梯需求”这一实际情况,将简化模型解决的单起点多终点(或多起点单终点)问题扩展为多起点多终点问题,并且在评价指标中加入了“优先满足高层的乘梯人员的乘梯需求”这一标准;
为解出这一复杂模型的最优解,本文在简化模型的最优解的基础上,进一步确定各电梯在地下一、二层和地上一层的停靠情况,从而得出更加符合实际情况的最优解;
结果发现,最优方案为仍分为六个区,每个电梯在一楼和地下一、二层均停。
最后,本文对该模型进行了评价,并提出了改进方案。
关键词:
群控电梯;
分区调度;
多目标规划;
层次分析法;
优化模型;
遍历搜索;
最大最小原则;
动态规划;
0-1规划
目录
第一部分问题重述·
·
3
第二部分问题分析·
4
第三部分模型假设·
7
第四部分定义与符号说明·
第五部分模型的建立与求解·
8
1问题
(1)·
2问题
(2)·
9
3问题(3)·
13
第六部分模型的评价与推广·
14
第七部分参考文献·
第八部分附录·
15
一、问题重述
现代高层商务楼一般都配备多部电梯以满足楼内人员的需要。
但在上下班高峰期,仍会造成电梯使用紧张。
因此,确定一个合理的电梯调度方案,安排好各个电梯的运行方式,是大楼物业管理中的重要内容。
1基本条件:
某写字楼有22层上层建筑,2个地下停车场,6部电梯,每个电梯的容量均为20人。
经调查,该楼各层人数分布如表1。
表1:
该写字楼各层办公人数
楼层
人数
1
2
5
6
无
208
177
222
130
181
191
236
10
11
12
16
139
272
270
300
264
17
18
19
20
2l
22
200
207
2问题:
问题
(1):
给出若干合理的模型评价指标来评价电梯调度方案是否合理
问题
(2):
暂不考虑该写字楼的地下部分,假设每层楼之间电梯的平均运行时间是3秒,最底层(地上一层)平均停留时间是20秒,其他各层若停留,则平均停留时间为10秒,电梯在各层的相应的停留时间内乘梯人员能够完成出入电梯。
对此建立数学模型(列明你的假设),给出一个尽量最优的电梯调度方案,并利用所提评价指标进行比较。
问题(3):
将在第2问中所建立的数学模型进一步实际化,以期能够尽量适用于实际情况,用于解决现实的电梯调度问题。
二、问题分析及思路流程图
(一)问题分析
1.问题
(1)的分析
问题
(1)属于模型的评价问题,其意义在于:
通过建立一个评价体系,对建模过程中提出的各种方案进行优劣的比较,进而找出最大限度满足各方需求的最优方案。
其步骤一般为:
首先找出模型的若干评价指标,并将其量化;
其次根据实际情况,选择合适的数学方法确定各评价指标的权重;
最后我们要建立一个综合的评价函数,并通过比较各方案对应评价函数值的大小确定其优劣。
寻找评价指标,一般应从各方利益的角度进行分析;
本文所讨论的电梯调度问题主要涉及到乘梯人群与写字楼物业管理两方的利益,因此评价指标应从乘客和电梯两方面考虑。
确定各评价指标的权重,一般有统计平均法,便宜系数法,专家打分法,层次分析法等,考虑到可行性,本文采用层次分析法。
建立综合评价函数,在前两步的基础上,将各评价指标先进行标准化,再按权重相加,最后得出综合评价函数。
2.问题
(2)的分析
问题
(2)属于简化条件下的调度问题,在查阅已有资料的基础上,发现分区调度是解决该类问题的基本方法。
针对该题,可以首先采用分类讨论的方法,即将地上21层(不含一楼)分别分为1,2,3,4,5,6个区六种方案;
然后针对各种方案分别计算出其目标函数(各个分区电梯平均载客量中的最大值与电梯总运行时间),并计算在其约束条件下目标函数的最小值,从而解出最优调度方案(各区的起始楼层及所用电梯数);
最后计算出各分区的最优调度方案的综合评价函数值,并进行比较,找出最终的最优调度方案。
这其实是由6个规划问题组成的最优化问题。
第一,每个小的规划问题,实际上是包含一个最大最小型目标函数的双目标函数规划问题;
而多目标规划问题,需要化为单目标规划来解决,主要有理想点法,最大最小法,线性加权法等三种方法,考虑到问题的复杂性,需要综合利用这三种方法。
首先,借助理想点法的思想,分别独立地算出两个目标函数的最优解;
其次,在计算第一个目标函数(各个分区电梯平均载客量中的最大值)的最优解时,需要采用最大最小法;
最后,借助理想点法和线性加权法的思想,选择将综合评价函数作为第三个目标函数计算其在约束条件下的最优值,解出此最优值对应的各区的起始楼层及所用电梯数即为该分区方案的最优调度方案。
第二,对于不同的分区方案,为简化计算方法,提高运算效率,可以采取动态规划的方法,即先计算出只分为1个区时的最优方案,在此基础上计算2个分区的最优方案,依次类推,得出6种分区方案各自的最优调度方案。
第三,比较6种分区方案各自的最优调度方案对应的综合评价函数值,得出最终的最优调度方案
3.问题(3)的分析
问题(3)要求将问题
(2)中建立的数学模型进一步实际化,以期能够尽量适用于实际情况,用于解决现实的调度问题;
这属于模型的修改完善问题。
解决这类问题的主要思路是,将简化模型中比较理想的,与现实相差较大的假设条件放宽或去掉以尽量接近实际情况,并据此对已建立的模型进行修改完善。
问题
(2)建立的简化模型中与实际最不相符的假设是不考虑地下两层,实际情况是(对于上班高峰)乘梯人群并不全在一楼乘梯,而是以一定的比例分散在地上1层与地下1,2层;
考虑到这一点我们需要将(对于上班高峰)单起点多终点的调度模型修改为多起点多终点的调度模型,并借助0—1规划的思想建立0—1函数决定某台电梯在3个起点(1层,-1层及-2层)的停靠情况;
在这个基础上修改原模型,得出最优解。
问题
(2)建立的简化模型中与实际不相符的假设还有写字楼所有人员均乘坐电梯上楼,而实际情况是低层的工作人员在等待电梯时间过长时,往往选择通过楼梯上下楼,因此,在评价最优方案时,要优先考虑更能满足高层人员乘梯需求的调度方案。
(二)思路流程图
图
(1)总体思路流程图
图
(2)建立评价指标的思路流程图
图(3)建立简化模型的思路流程图
图(4)将模型进一步实际化的思路流程图
三、模型假设
1假设电梯上行过程中只考虑一楼门口乘客情况,其他楼层的请求暂不考虑。
而电梯下行过程中只考虑所控制楼层需下行的乘客情况,上行请求暂不考虑。
2电梯满载时电梯即自动关门,不考虑认为因素造成关门延时
3电梯在这段时间的服务是连续的不考虑因故障停电等因素暂停运营的情况
4同一区的电梯是均匀分布在该区所服务的楼层
5假设办公楼里的工作人员都乘坐电梯,不考虑低层人员步行的情况
6假设上班高峰期间,电梯上行只用来将乘客往上层运,电梯下行时空载;
下班高峰期间,电梯上行时空载,下行时只用来将乘客往下层运
7电梯单位时间内功耗一定
8其他假设在需要时在文中补充说明
四、符号定义及说明
I楼层分区数
i第i区
第i区电梯控制楼层的最低层
第i区电梯控制楼层数
第i区电梯数
N写字楼总人数
第i区办公人数
第i区乘客平均到达率
第i区乘客平均到达率最大值
第i区乘客到达率
第i区电梯运行周期
k第k层
第k层人数
C电梯容量
五、模型的建立与求解
请给出若干合理的模型评价指标
一个合理的电梯调度方案应该既能够满足大楼内人员使用需要,又要降低成本,因此可以从乘客和电梯组两个角度考虑来评价调度方案是否合理。
1乘客角度
对于乘客来说,到达目标层用时是影响其满意度的主要因素。
而到达目标层需要经历两个阶段,等待时间和乘坐电梯时间。
这两个指标越小越好。
2电梯角度
对于电梯来说,一方面电梯利用率应尽可能高,最好每次都达到满载,这样也可避免电梯运转次数,另一方面,考虑成本问题,电梯的运行成本应由电梯需载人数及其到达楼层,电梯运行速度等决定,由于这两点给定,电梯的单位时间功耗一定,因此电梯运行总时间越短越好。
根据以上分析我们得到评价指标有:
乘客等待时间,乘坐电梯的时间,电梯的利用率,电梯运行总时间。
考虑到乘客的等待时间和电梯的运行周期有以及电梯的利用率有着密切的关系,我们引入理论电梯平均载客量。
设乘客平均到达率为,电梯运行周期为T,电梯容量为C,那么在T时间内到达乘客数为T,那么理论电梯
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学建模 电梯调度问题4 数学 建模 电梯 调度 问题