随机变量及其分布数学期望方差概率例题Word下载.docx
- 文档编号:14946173
- 上传时间:2022-10-26
- 格式:DOCX
- 页数:21
- 大小:344.84KB
随机变量及其分布数学期望方差概率例题Word下载.docx
《随机变量及其分布数学期望方差概率例题Word下载.docx》由会员分享,可在线阅读,更多相关《随机变量及其分布数学期望方差概率例题Word下载.docx(21页珍藏版)》请在冰豆网上搜索。
(II)记三个区中选择疫苗批号相同的区的个数为,求的数学期望.
3.(2010抚顺模拟)
某校的学生记者团由理科组和文科组构成,具体数据如下表所示:
组别
理科
文科
性别
男生
女生
人数
5
4
3
2
学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.
(Ⅰ)求理科组恰好记4分的概率?
(Ⅱ)设文科男生被选出的人数为,求随机变量的分布列和数学期望.
4.(2010沈阳一模)
某超市为促销商品,特举办“购物有奖100﹪中奖”活动.凡消费者在该超市购物满10元,享受一次摇奖机会,购物满20元,享受两次摇奖机会,以此类推.摇奖机的结构如图所示,将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,落入A袋为一等奖,奖金为2元,落入B袋为二等奖,奖金为1元.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是.
(Ⅰ)求摇奖两次,均获得一等奖的概率;
(Ⅱ)某消费者购物满20元,摇奖后所得奖金为X元,试求X的分布列与期望;
(Ⅲ)若超市同时举行购物八八折让利于消费者活动(打折后不再享受摇奖),某消费者刚好消费20元,请问他是选择摇奖还是选择打折比较划算.
5.(2010沈阳三模)
一个口袋中装有大小相同的个红球(且)和个白球,每次从中任取两个球,当两个球的颜色不同时,则规定为中奖.
(Ⅰ)试用表示一次取球中奖的概率;
(Ⅱ)记从口袋中三次取球(每次取球后全部放回)恰有一次中奖的概率为,求的最大值;
(Ⅲ)在(Ⅱ)的条件下,当m取得最大值时将个白球全部取出后,对剩下的个红球作如下标记:
记上号的有个(),其余的红球记上号,现从袋中任取一球,X表示所取球的标号,求X的分布列、期望.
6.(2010高.考.资.源.网预测)
设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(3)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。
7.(2010大连二模)
某班50名学生在一模数学考试中,成绩都属于
区间[60,110]。
将成绩按如下方式分成五组:
第一组[60,70);
第二组[70,80);
第三组
[80,90);
第四组[90,100);
第五组[100,110]。
部分频率分布直方图如图所示,及格(成绩不
小于90分)的人数为20。
(1)请补全频率分布直方图;
(2)在成绩属于[70,80)∪[90,100]的学生中任取
两人,成绩记为,求的概率;
(3)在该班级中任取4人,其中及极格人数记为随机变
量X,写出X的分布列(结果只要求用组合数
表示),并求出期望E(X)。
8.(2010东北育才、大连育明三模)
单位为30元/件的日用品上市以后供不应求,为满足更多的消费者,某商场在销售的过程中要求购买这种产品的顾客必须参加如下活动:
摇动如图所示的游戏转盘(上面扇形的圆心角都相等),按照指针所指区域的数字购买商品的件数,在摇动转盘之前,顾客可以购买20元/张的代金券(限每人至多买12张),每张可以换一件该产品,如果不能按照指针所指区域的数字将代金券用完,那么余下的不能再用,但商场会以6元/张的价格回收代金券,每人只能参加一次这个活动,并且不能代替别人购买。
(1)如果某顾客购买12张代金券,最好的结果是什么?
出现这种结果的概率是多少?
(2)求需要这种产品的顾客,能够购买到该产品件数的分布列及均值;
(3)如果某顾客购买8张代金券,求该顾客得到优惠的钱数的均值。
9.(2010东北育才、大连育明二模)
由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若视力测试结果不低丁,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.
10.(2010东北三省四市联考)
为考察某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
药物效果试验列联表
患病
未患病
总计
没服用药
20
30
50
服用药
x
y
M
N
100
工作人员曾用分层抽样的方法从50只服用药的动物中抽查10个
进行重点跟踪试验.知道其中患病的有2只.
(I)求出列联表中数据,,M,N的值;
(II)画出列联表的等高条形图,并通过条形图判断药物是否有效;
(III)能够以97.5%的把握认为药物有效吗?
参考数据:
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
0.455
0.708
1.323
2.072
2.706
3.841
5.204
6.635
7.879
10.8282
11.(2010银川一中二模)
某单位为加强普法宣传力度,增强法律意识,举办了“普法知识竞赛”,现有甲、乙、丙三人同时回答一道有关法律知识的问题,已知甲回答对这道题的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答对的概率是.
(1)求乙、丙两人各自回答对这道题的概率。
(2)求甲、乙、丙三人中恰有两人回答对该题的概率。
12.(2010银川一中一模)
有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出的分布列,求的数学期望。
13.(2010吉林市二模)
道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:
“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<
80时,为酒后驾车;
当Q≥80时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有2人,依据上述材料回答下列问题:
(Ⅰ)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(Ⅱ)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望,并指出所求期望的实际意义;
(Ⅲ)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是和,且每位驾驶员是否发生交通事故是相互独立的。
依此计算被查处的8名驾驶员中至少有一人发生交通事故的概率。
(精确到)并针对你的计算结果对驾驶员发出一句话的倡议.
14.(2010海南五校联考)
如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀.每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1.两个2.两个3一共六个数字.质点P从A点出发,规则如下:
当正方体上底面出现的数字是1,质点P前进一步(如由A到B);
当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
(Ⅰ)求点P恰好返回到A点的概率;
(Ⅱ)在点P转一圈恰能返回到A点的所有结果中,用随机变量表示点P恰能返回到A点的投掷次数,求的数学期望.
15.(2010东北三校一模)
甲乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下,
甲运动员
射击环数
频数
频率
7
10
8
9
35
合计
1
乙运动员
12
80
若将频率视为概率,回答下列问题,
(1)求甲运动员击中10环的概率
(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率
(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及.
16.(2010东北三校三模)
第11届哈尔滨冰雪大世界以“冰雪建筑华章,欢乐相约世界”为主题,于2009年12月24日正式开园。
在建园期间,甲、乙、丙三个工作队负责从冰冻的松花江中采出尺寸相同的冰块。
在冰景制作过程中,需要对冰块进行雕刻,有时冰块会碎裂,假设冰块碎裂后整块冰块就不能使用,定义:
冰块利用率=假设甲、乙丙工作队所采冰块分别占采冰总量的25%、35%、40%,各队采出的冰块利用率分别为,,,
(1)在采出的冰块中有放回地抽取三块,其中由甲工作队采出的冰块数记为,求的分布列及其数学期望;
(2)在采出的冰块中任取一块,求它被利用的概率。
17.(2010大连双基测试)
一个口袋中有2个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖。
(1)试用含的代数式表示一次摸球中奖的概率P;
(2)若,求三次摸球恰有一次中奖的概率;
(3)记三次摸球恰有一次中奖的概率为,当为何值时,最大。
18.(2010吉林十一校联考)
甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:
射手甲
射手乙
环数
概率
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 随机变量 及其 分布 数学 期望 方差 概率 例题