压片物料的粉体学性质与片剂成型性的关系Word文档下载推荐.docx
- 文档编号:14944707
- 上传时间:2022-10-26
- 格式:DOCX
- 页数:6
- 大小:24.20KB
压片物料的粉体学性质与片剂成型性的关系Word文档下载推荐.docx
《压片物料的粉体学性质与片剂成型性的关系Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《压片物料的粉体学性质与片剂成型性的关系Word文档下载推荐.docx(6页珍藏版)》请在冰豆网上搜索。
FDA也积极的倡导制药工业实施“质量源于设计(qualitybydesign,QbD)”的研发策略[2][3];
现在,人们对于片剂成形性好坏的判断需要更加科学、真实、详细的理论与数据为依据,对于片剂制备工艺的优化更需要深入了解结构、性质、工艺、性能之间的关系,多学科交叉进行处方筛选与制备工艺的优化。
压片物料的压缩特性通常就是多种压缩变形机制与多种粉体学性质的综合体现。
压片物料的压缩特性与流动性直接影响其对生产中高速压片的适应性,理想的压片物料要具有极好的流动性与可压性,如何科学合理的评价物料的流动性与可压性,提高生产效率就是指导片剂处方筛选、压片工艺优化的关键,也就是解决生产中松片、裂片、偏重差异过大等问题的重要手段。
本文从压片物料的粉体学性质出发来阐述压片物料与片剂压缩成型性的关系,为进一步认识物料的压缩特性与解决片剂生产中存在的问题提供参考。
1粒径分布及大小
粒径分布及大小对压片物料的可压性、片重差异与有效成分的溶出都有显著影响。
压片物料的粒径分布均匀,能改善物料混合均匀度,提高片剂含量的均匀度。
对于全粉末压片,药物与辅料粒径分布均匀对于改善压片物料的流动性更加重要,避免因机器震动或搅拌器搅拌不均带来的粉末分层,偏重差异变化大等问题。
粒径越小、压缩时粒子重排空间越大,有利于粒子群趋向于更大变形的位置排列,片面光洁度越好,药物的溶出度越好。
1、1粒径大小对压片物料溶出度的影响
固体药物的生物利用度主要体现在药物活性成分溶出的速度与程度。
粒径越小的物料制备片剂的溶出度越高,特别对于以原料药入药的中药物料,利用超微粉碎技术将药材粉末粉碎成极细粉,细胞破壁,相对增加了溶剂与粉体接触的表面积与溶剂的穿透能力,有效成分不用突破细胞壁、细胞膜的阻碍,溶出度显著增大;
药材超微粉碎后,还可使固态的物料实现液相混合——挥发油或脂肪油等水不溶物性物质与药材中的水分形成“乳化结构”,增强其溶出,减少了挥发油的损失[4]。
超微粉碎润湿性好、粘附性强,崩解后粘附于胃肠道壁增强了药物的吸收。
细胞级的微米中药制剂也一度被认为就是采用现代高科技与传统炮制、制剂技术研制出来的一种新剂型[5]。
1、2粒径大小对物料可压性的影响
在制药行业中经常用中位径D50比较颗粒粒子大小,几何标准差D84/D50或者span[(D90-D10)/D50]表示粒径分布的均齐度[6]。
杨昕等[7]研究颗粒的粒径分布对片重差异的影响,以片重差异极值对粒度分布标准差作图,线性关系显示二者呈明显的正相关(r=0、844,P<0、01)。
通过川北方程与久野方程计算得粉体中的大粒子的a值小,b值大,说明粉体中大粒子的流动性与填充性大于小粒子。
另一方面物料的粒径越小,比表面积与孔隙率越大,则压缩成型时料层的变形愈大,接触面大,结合力点多,结合愈紧密,所以减小颗粒粒径有利于增加片剂的抗张强度。
对于结晶型药物而言,粒径减小会增大晶型的结构缺陷,晶体易破裂增大粒子之间的结合力。
张源等[8]用14~60,16~60,20~60目3种粒径筛间颗粒进行压片,测得硬度分别为4、60,6、32,6、35kg;
片重差异分别为0、51%~-2、33%,1、24%~1、26%,-0、97%~0、53%。
Kaerger等[9]对不同粒径的对乙酰氨基酚进行压缩成型性考察,发现小粒子制成的片剂抗张强度增大。
Omelczuk等[10]以压片指数为指标评价了粒径大小对片剂可压性的影响,分别考察了粒径分布集中于10~100μm与粒径分布集中于1~10μm的两批物料;
结果粒径小的物料所得片剂的键合指数(BI)、抗张强度与压痕硬度显著高于粒径大者。
2物料含水量
一般要求压片物料所需的含水量在3%~5%,颗粒中的水分受挤压到粒子表面溶解可溶性成分,待压力撤除,其重新析晶后使相邻粒子间产生“固体桥”;
或者挤压到粒子表面的水分增强粒子表面粘合剂的架桥作用,使粒子的牢固结合,适当的水分就是增大粒子间结合力,保证片剂成型的关键。
适当的水分在压片时还会产生一种黏聚力[11],能提高片剂的硬度,混合物粉体的黏聚力就是范德华力、库仑力、固体桥联力、液体桥联力或其中的几种力的合力[12],利于压片过程中的物料的塑性形变。
另一方面,颗粒中水分在颗粒受压的过程中被挤压到颗粒的表面形成薄膜,可起润滑作用,促进粒子在压缩过程中的的重排,促使粒子流趋向于发生最大变形的位置移动,改善压力的传递,从而增加粒子间的结合力,增加片剂的硬度。
朱蕾等[13]应用多元逐步回归分析法考察中药提取物与微晶纤维素混合物后的黏聚力、堆密度、含水量与片剂抗张强度的相关性,发现混合物料的含水量、粉体间的黏聚力与片剂的抗张强度呈正相关;
但若物料含水量高,物料的粘聚度增大,流动性降低,增大了片重差异与造成粘冲现象。
物料水分太少,颗粒弹性大或机械强度大,塑性小,压片易发生頂裂或腰裂,成型性差。
所以控制压片物料的水分就是保证片剂质量的关键因素之一。
3压片物料的粉体学性质评价方法
无论就是粉末压片还就是颗粒压片,理想的压片物料需要具有极好的流动性与可压性,目前评价物料流动性的方法主要有3种:
基于测量颗粒质量流量的方法:
霍尔流量计测量[14],低速转鼓中的颗粒物质的坍塌规模或质量流率测量等[15];
基于测量颗粒摩擦的方法,如静力学休止角、剪切流变力、压缩度测量等[16];
颗粒形状的分形维数法,如观察、比较例子的圆整度、球形度等[17]。
粉体摩擦的方法就是实际应用较多的方法,被美国药典与欧洲药典普遍采用。
测量指标主要有:
休止角、流出速度、堆密度、压缩度等;
通过粉体综合物性测定仪测定上述指标,操作简单、重现性好,对于粉体流动性的评测更加科学化。
评价物料可压性的常规方法主要通过测量粉体压缩成型后的径向破碎力、但物料的水分、粒子的结晶形态、润滑剂的种类都对物料的可压性产生影响,为更科学的预测粉体的可压性,研究者通过大量的实验,观察、分析压缩过程,引入数学模型来评价粉体的可压性,如川北方程、Heckel方程、指数方程、Leunberger方程等[18]。
3、1流动性评测
3、1、1休止角
粒子自由堆积形成的斜面与水平面的夹角,其大小主要决定于粒子重力与摩擦力的关系,主要方法有注入法、排出法、倾斜角法等。
休止角越小,表明物料的流动性越好,一般认为,休止角小于30°
时,流动性好,小于40°
时可以满足压片对流动性的要求,休止角的测量方便、简单,因此被广泛应用。
但测量结果受物料的水分、操作方式、读数误差等因素的影响,所以,不能单从休止角判断物料的流动性好坏,特别就是颗粒中粒径分布不均,细粉造成粒子间摩擦增大,形成结拱与鼠孔时,休止角大于40°
颗粒流动性任然可以满足压片的要求。
3、1、2松密度、振实密度、压缩度
物料在振动条件下均匀流出,物料的重量除以自由通过小孔流出堆积的最松体积即为松密度ρ0,以一定的频率轻敲使其自由堆积的物料振实到最小体积后得到的密度即为振实密度ρf,压缩度C=(ρf―ρ0)∕ρf,松密度越小,物料的填充性越差;
压缩度越小、粒子自由堆积时的摩擦力与空隙小,物料的流动性越好,一般认为,当压缩度小于20%,物料的流动性较好。
压缩度的测量重现性好,就是比较物料流动性的较好的办法。
3、1、3流出速度
属于质量流量法,指一定量粉体自由通过小孔的速度,一般选用下端去除孔径为10mm的漏斗。
粉末流速越大,流动性越好。
若粉末聚集性强,流动性差,不易自由流过小孔,可向粉末中加入100μm的玻璃球或小钢珠,比较加入玻璃球或小钢珠的量(w%)可以比较流动性大小。
流速法不能区分流动性很接近的两种粉体的流动性大小。
3、1、4川北方程
川北方程为粉体流动性考察的经验方程,具体操作就是将待测粉体用漏斗匀速、缓慢注入已称重的100mL量筒中,至松体积为70~100mL。
将装有粉末的量筒离水平桌面约2cm高度向桌面自由落下,计录落下的次数n及相应的体积数Vn,用如下公式进行数据处理。
川北方程:
式中C为粉体的相对体积减小分数,C=(V0-Vn)/V0;
n为落下的次数;
a就是轻敲次数为无穷大时相对体积减小分数(最终体积减少数),a越小,表明粉体的流动性越好;
b为充填速度常数,b越大,则表明粉体充填性越好。
以n/C对n作图,根据直线斜率、截距,计算a、b。
3、1、5其她评价方法
粉体的流动性受粉体粒子的粒径大小、结晶形态、水分等因素的影响,对于粉体流动性评测指标还有内聚力、内摩擦角、平板角、表示压缩度的豪斯纳比率[19],日本细川粉体工学研究所曾将测定粉体特性的装置集合在一起,组成粉体综合特性测定仪,由该仪器可同时测定多种粉体特性,并根据这些特性所对应的经验指数求得Carr流动性指数[20],Carr流动性指数的范围就是0~100,Carr指数越大,粉体的流动性越好。
3、2可压性评价
3、2、1粒子的结晶形态
一般认为立方晶系的结晶对称性好,易压缩成形;
鳞片状与针状结晶压缩时易成层状排列,机械粘合作用力弱,压缩成形性差,树枝状结晶压缩时机械结合力大。
例如普通淀粉结晶形态完整,表面光滑,压缩结合力小,弹性复原率大;
可压性淀粉的结晶表面粗糙,有裂隙与空洞,增加了压缩时颗粒间啮合力,受压时表现为塑性变形,压缩成型性高[21]。
王洪光等[22]对不同晶态的对乙酰氨基酚原料的弹、塑性比值(ER/PC)、压缩能比与脆性破碎指数(BFI)的测定,发现对乙酰氨基酚的三种不同晶型粉末:
块状结晶、鳞片状结晶、针状结晶中,块状结晶ER/PC值小,弹性能小,BFI值小,塑性较大,可压性好;
鳞片状结晶、针状结晶压缩就是的压缩能大,但弹性能也大,直接压片松片、裂片严重。
3、2、2物料的松密度、压缩度
颗粒或粉末的松密度与压缩度就是粒子间摩擦力的体现,反映粉体的凝聚性与松软状态,一般二者结合起来表征压片物料的流动性与填充性。
压片物料的松密度越小,粒子表面粗糙,比表面积与孔隙率大,粒子流动性差,物料堆积时产生“结拱”现象或形成鼠孔,不利于压片时物料的填充,增大了片重差异。
李超等[23]考察了不同湿度下的愈创木酚甘油醚缓释片颗粒的压缩度、休止角与片剂片重差异、脆碎度的关系,发现颗粒压缩度与片重差异极值、脆碎度呈负相关(P<0、05),所以物料压缩度越小,说明物料内部孔隙率小,粒子之间摩擦力小,流动性、填充性好;
另一方面压缩度还反映物料的可压性,物料压缩度越大,孔隙率越大,压缩时粒子的变形空间大,易朝着塑性变形的方向
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 压片 物料 粉体学 性质 片剂 成型 关系