电子测量技术实验指导书docWord格式文档下载.docx
- 文档编号:14888161
- 上传时间:2022-10-25
- 格式:DOCX
- 页数:21
- 大小:188.84KB
电子测量技术实验指导书docWord格式文档下载.docx
《电子测量技术实验指导书docWord格式文档下载.docx》由会员分享,可在线阅读,更多相关《电子测量技术实验指导书docWord格式文档下载.docx(21页珍藏版)》请在冰豆网上搜索。
示波器的一般应用
一、实验目的:
了解通用电子示波工器工作原理的基础上,学会正确使用示波器测量各种电参数的方法。
二、实验仪器:
1、函数信号发生器,SG1646,1台;
2、双踪示波器,型号CA8000系列,数量1台。
三、实验原理
在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。
它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。
我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。
电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的X偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在Y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。
若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条垂直的直线。
因此,只有当X偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。
一般说来,Y偏转板上所加的待观测信号的周期与X偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。
这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。
近代电子示波器通常是采用等待触发扫描的工作方式来实现同步的。
只要选择不同的触发电平和极性,扫描便可稳定在待观测信号的某一相应相位点开始,从而使显示波形稳定、清晰。
在现代电子示波器中,为了便于同时观测两个信号(如比较两个信号的相位关系),采用了双踪显示的办法,即在荧光屏上可以同时有两条光迹出现,这样,两个待测的信号便可同时显示在荧光屏上,双踪显示时,有交替、断续两种工作方式。
交替、断续工作时,扫描电压均为一种,只是把显示时间进行了相应的划分而已。
由于双踪显示时两个通道都有信号输入,因此还可以工作于叠加方式,这时是将两个信号逐点相加起来后送到Y偏转板的。
这种工作方式可模拟谐波叠加,波形失真等问题。
同时,如果改变其中一个的极性,也可以实现相减的显示功能。
这相当于两个函数的相加减。
示波器除了用于观测信号的时间波形外,还可将两个相同或不同的信号分别加于垂直和水平系统,以观测两信号在平面上正交叠加所组成的图形,如李沙育图形。
它可用于观测两个信号之间的幅度、相位和频率关系。
下面介绍示波器的使用方法。
示波器种类、型号很多,功能也不同。
数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。
这些示波器用法大同小异。
以下介绍不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。
3.1荧光屏
荧光屏是示波管的显示部分。
屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。
水平方向指示时间,垂直方向指示电压。
水平方向分为10格,垂直方向分为8格,每格又分为5份。
垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。
根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。
3.2示波管和电源系统
1.电源(Power)
示波器主电源开关。
当此开关按下时,电源指示灯亮,表示电源接通。
2.辉度(Intensity)
旋转此旋钮能改变光点和扫描线的亮度。
观察低频信号时可小些,高频信号时大些。
一般不应太亮,以保护荧光屏。
3.聚焦(Focus)
聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。
4.标尺亮度(Illuminance)
此旋钮调节荧光屏后面的照明灯亮度。
正常室内光线下,照明灯暗一些好。
室内光线不足的环境中,可适当调亮照明灯。
3.3垂直偏转因数和水平偏转因数
1.垂直偏转因数选择(VOLTS/DIV)和微调
在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。
灵敏度的倒数称为偏转因数。
垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。
实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。
踪示波器中每个通道各有一个垂直偏转因数选择波段开关。
一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。
波段开关指示的值代表荧光屏上垂直方向一格的电压值。
例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。
每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。
将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。
逆时针旋转此旋钮,能够微调垂直偏转因数。
垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。
许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。
例如,如果波段开关指示的偏转因数是1V/DIV,采用×
5扩展状态时,垂直偏转因数是0.2V/DIV。
在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。
2.时基选择(TIME/DIV)和微调
时基选择和微调的使用方法与垂直偏转因数选择和微调类似。
时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。
波段开关的指示值代表光点在水平方向移动一个格的时间值。
例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。
“微调”旋钮用于时基校准和微调。
沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。
逆时针旋转旋钮,则对时基微调。
旋钮拔出后处于扫描扩展状态。
通常为×
10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。
例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于
2μS×
(1/10)=0.2μS
TDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。
示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。
例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。
示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。
旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。
3.4输入通道和输入耦合选择
1.输入通道选择
输入通道至少有三种选择方式:
通道1(CH1)、通道2(CH2)、双通道(DUAL)。
选择通道1时,示波器仅显示通道1的信号。
选择通道2时,示波器仅显示通道2的信号。
选择双通道时,示波器同时显示通道1信号和通道2信号。
测试信号时,首先要将示波器的地与被测电路的地连接在一起。
根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。
示波器探头上有一双位开关。
此开关拨到“×
1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。
10"
位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。
2.输入耦合方式
输入耦合方式有三种选择:
交流(AC)、地(GND)、直流(DC)。
当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。
直流耦合用于测定信号直流绝对值和观测极低频信号。
交流耦合用于观测交流和含有直流成分的交流信号。
在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。
3.5触发
第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;
另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。
由此可知,正确的触发方式直接影响到示波器的有效操作。
为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。
1.触发源(Source)选择
要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。
触发源选择确定触发信号由何处供给。
通常有三种触发源:
内触发(INT)、电源触发(LINE)、外触发EXT)。
内触发使用被测信号作为触发信号,是经常使用的一种触发方式。
由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。
双踪示波器中通道1或者通道2都可以选作触发信号。
电源触发使用交流电源频率信号作为触发信号。
这种方法在测量与交流电源频率有关的信号时是有效的。
特别在测量音频电路、闸流管的低电平交流噪音时更为有效。
外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。
外触发信号与被测信号间应具有周期性的关系。
由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。
正确选择触发信号对波形显示的稳定、清晰有很大关系。
例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。
2.触发耦合(Coupling)方式选择
触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。
这里介绍常用的几种。
AC耦合又称电容耦合。
它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。
通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。
但是如果触发信号的频率小于10Hz,会造成触发困难。
直流耦合(DC)不隔断触发信号的直流分量。
当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。
低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;
高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。
此外还有用于电视维修的电视同步(TV)触发。
这些触发耦合方式各有自己的适用范围,需在使用中去体会。
3.触发电平(Level)和触发极性(Slope)
触发电平调节又叫同步调节,它使得扫描与被测信号同步。
电平调节旋钮调节触发信号的触发电平。
一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。
顺时针旋转旋钮,触发电平上升;
逆时针旋转旋钮,触发电平下降。
当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。
当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(HoldOff)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。
极性开关用来选择触发信号的极性。
拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。
拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电子 测量 技术 实验 指导书 doc