新版新人教版学年九年级数学上册24圆教案含参考答案Word格式文档下载.docx
- 文档编号:14867990
- 上传时间:2022-10-25
- 格式:DOCX
- 页数:35
- 大小:246.42KB
新版新人教版学年九年级数学上册24圆教案含参考答案Word格式文档下载.docx
《新版新人教版学年九年级数学上册24圆教案含参考答案Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《新版新人教版学年九年级数学上册24圆教案含参考答案Word格式文档下载.docx(35页珍藏版)》请在冰豆网上搜索。
1.从以上圆的形成过程,总结概念:
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.
2.小组讨论下面的两个问题:
问题1:
圆上各点到定点(圆心O)的距离有什么规律?
问题2:
到定点的距离等于定长的点又有什么特点?
3.小组代表发言,教师点评总结,形成新概念.
(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆上.
因此,我们可以得到圆的新概念:
圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.(一个图形看成是满足条件的点的集合,必须符合两点:
在图形上的每个点,都满足这个条件;
满足这个条件的每个点,都在这个图形上.)
活动3 学以致用,巩固概念
1.教材第81页 练习第1题.
2.教材第80页 例1.
多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距离相等.
活动4 自学教材,辨析概念
1.自学教材第80页例1后面的内容,判断下列问题正确与否:
(1)直径是弦,弦是直径;
半圆是弧,弧是半圆.
(2)圆上任意两点间的线段叫做弧.
(3)在同圆中,半径相等,直径是半径的2倍.
(4)长度相等的两条弧是等弧.(教师强调:
长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.)
(5)大于半圆的弧是劣弧,小于半圆的弧是优弧.
2.指出图中所有的弦和弧.
活动5 达标检测,反馈新知
教材第81页 练习第2,3题.
活动6 课堂小结,作业布置
课堂小结
1.圆、弦、弧、等圆、等弧的概念.要特别注意“直径和弦”“弧和半圆”以及“同圆、等圆”这些概念的区别和联系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.
2.证明几点在同一圆上的方法.
3.集合思想.
作业布置
1.以定点O为圆心,作半径等于2厘米的圆.
2.如图,在Rt△ABC和Rt△ABD中,∠C=90°
,∠D=90°
,点O是AB的中点.
求证:
A,B,C,D四个点在以点O为圆心的同一圆上.
答案:
1.略;
2.证明OA=OB=OC=OD即可.
24.1.2 垂直于弦的直径
理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.
通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.
垂径定理及其运用.
探索并证明垂径定理及利用垂径定理解决一些实际问题.
一、复习引入
①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.
以点O为圆心的圆,记作“⊙O”,读作“圆O”.
②连接圆上任意两点的线段叫做弦,如图线段AC,AB;
③经过圆心的弦叫做直径,如图线段AB;
④圆上任意两点间的部分叫做圆弧,简称弧,以A,C为端点的弧记作“”,读作“圆弧AC”或“弧AC”.大于半圆的弧(如图所示)叫做优弧,小于半圆的弧(如图所示或)叫做劣弧.
⑤圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
⑥圆是轴对称图形,其对称轴是任意一条过圆心的直线.
二、探索新知
(学生活动)请同学按要求完成下题:
如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.
(1)如图是轴对称图形吗?
如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系?
说一说你理由.
(老师点评)
(1)是轴对称图形,其对称轴是CD.
(2)AM=BM,=,=,即直径CD平分弦AB,并且平分及.
这样,我们就得到下面的定理:
垂直于弦的直径平分弦,并且平分弦所对的两条弧.
下面我们用逻辑思维给它证明一下:
已知:
直径CD、弦AB,且CD⊥AB垂足为M.
AM=BM,=,=.
分析:
要证AM=BM,只要证AM,BM构成的两个三角形全等.因此,只要连接OA,OB或AC,BC即可.
证明:
如图,连接OA,OB,则OA=OB,
在Rt△OAM和Rt△OBM中,
∴Rt△OAM≌Rt△OBM,
∴AM=BM,
∴点A和点B关于CD对称,
∵⊙O关于直径CD对称,
∴当圆沿着直线CD对折时,点A与点B重合,与重合,与重合.
∴=,=.
进一步,我们还可以得到结论:
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(本题的证明作为课后练习)
例1 有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?
请说明理由.
要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.
解:
不需要采取紧急措施,
设OA=R,在Rt△AOC中,AC=30,CD=18,
R2=302+(R-18)2,
R2=900+R2-36R+324,
解得R=34(m),
连接OM,设DE=x,在Rt△MOE中,ME=16,
342=162+(34-x)2,
162+342-68x+x2=342,x2-68x+256=0,
解得x1=4,x2=64(不合题意,舍去),
∴DE=4,
∴不需采取紧急措施.
三、课堂小结(学生归纳,老师点评)
垂径定理及其推论以及它们的应用.
四、作业布置
1.垂径定理推论的证明.
2.教材第89,90页 习题第8,9,10题.
24.1.3 弧、弦、圆心角
1.理解圆心角的概念和圆的旋转不变性,会辨析圆心角.
2.掌握在同圆或等圆中,圆心角与其所对的弦、弧之间的关系,并能应用此关系进行相关的证明和计算.
圆心角、弦、弧之间的相等关系及其理解应用.
从圆的旋转不变性出发,发现并论证圆心角、弦、弧之间的相等关系.
活动1 动手操作,得出性质及概念
1.在两张透明纸片上,分别作半径相等的⊙O和⊙O′.
2.将⊙O绕圆心旋转任意角度后会出现什么情况?
圆是中心对称图形吗?
3.在⊙O中画出两条不在同一条直线上的半径,构成一个角,这个角叫什么角?
学生先说,教师补充完善圆心角的概念.
如图,∠AOB的顶点在圆心,像这样的角叫做圆心角.
4.判断图中的角是否是圆心角,说明理由.
活动2 继续操作,探索定理及推论
1.在⊙O′中,作与圆心角∠AOB相等的圆心角∠A′O′B′,连接AB,A′B′,将两张纸片叠在一起,使⊙O与⊙O′重合,固定圆心,将其中一个圆旋转某个角度,使得OA与O′A′重合,在操作的过程中,你能发现哪些等量关系,理由是什么?
请与小组同学交流.
2.学生会出现多对等量关系,教师给予鼓励,然后,老师小结:
在等圆中相等的圆心角所对的弧相等,所对的弦也相等.
3.在同一个圆中,相等的圆心角所对的弧相等吗?
所对的弦相等吗?
4.综合2,3,我们可以得到关于圆心角、弧、弦之间的关系定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.请用符号语言把定理表示出来.
5.分析定理:
去掉“在同圆或等圆中”这个条件,行吗?
6.定理拓展:
教师引导学生类比定理,独立用类似的方法进行探究:
(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也分别相等吗?
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,所对的弧也分别相等吗?
综上所述,在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.
活动3 学以致用,巩固定理
1.教材第84页 例3.
多媒体展示例3,引导学生分析要证明三个圆心角相等,可转化为证明所对的弧或弦相等.鼓励学生用多种方法解决本题,培养学生解决问题的意识和能力,感悟转化与化归的数学思想.
活动4 达标检测,反馈新知
教材第85页 练习第1,2题.
活动5 课堂小结,作业布置
1.圆心角概念及圆的旋转不变性和对称性.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,以及其应用.
3.数学思想方法:
类比的数学方法,转化与化归的数学思想.
1.如果两个圆心角相等,那么( )
A.这两个圆心角所对的弦相等
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等
D.以上说法都不对
2.如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,求弦CE的长.
3.如图,在⊙O中,C,D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M,N在⊙O上.
(1)求证:
=;
(2)若C,D分别为OA,OB中点,则==成立吗?
1.D;
2.3;
3.
(1)连接OM,ON,证明△MCO≌△NDO,得出∠MOA=∠NOB,得出=;
(2)成立.
24.1.4 圆周角(2课时)
第1课时 圆周角的概念和圆周角定理
1.理解圆周角的概念,会识别圆周角.
2.掌握圆周角定理,并会用此定理进行简单的论证和计算.
圆周角的概念和圆周角定理.
用分类讨论的思想证明圆周角定理,尤其是分类标准的确定.
活动1 复习类比,引入概念
1.用几何画板显示圆心角.
2.教师将圆心角的顶点进行移动,如图1.
(1)当角的顶点在圆心时,我们知道这样的角叫圆心角,如∠AOB.
(2)当角的顶点运动到圆周时,如∠ACB这样的角叫什么角呢?
学生会马上猜出:
圆周角.教师给予鼓励,引出课题.
3.总结圆周角概念.
(1)鼓励学生尝试自己给圆周角下定义.估计学生能类比圆心角给圆周角下定义,顶点在圆周上的角叫圆周角,可能对角的两边没有要求.
(2)教师提问:
是不是顶点在圆周上的角就是圆周角呢?
带着问题,教师出示下图.
学生通过观察,会发现形成圆周角必须具备两个条件:
①顶点在圆周上;
②角的两边都与圆相交.最后让学生再给圆周角下一个准确的定义:
顶点在圆周上,两边都与圆相交的角叫圆周角.
(3)比较概念:
圆心角定义中为什么没有提到“两边都与圆相交”呢?
学生讨论后得出:
凡是顶点在圆心的角,两边一定与圆相交,而顶点在圆周上的角则不然,因此,学习圆周角的概念,一定要注意角的两边“都与圆相交”这一条件.
活动2 观察猜想,寻找规律
1.教师出示同一条弧所对圆周角为90°
,圆心角为180°
和同一条弧所对圆周角为45°
,圆心角为90°
的特殊情况的图形.
提出问题:
在这两个图形中,对着同一条弧的圆周角和圆心角,它们之间有什么数量关系.由于情况特殊,学生观察、测量后,容易得出:
对着同一条弧的圆周角是圆心角的一半.
2.教师提出:
在一般情况下,对着
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新版 新人 学年 九年级 数学 上册 24 教案 参考答案