鲁教版小学五年级数学上下册知识点归纳Word格式.docx
- 文档编号:14760485
- 上传时间:2022-10-24
- 格式:DOCX
- 页数:24
- 大小:44.47KB
鲁教版小学五年级数学上下册知识点归纳Word格式.docx
《鲁教版小学五年级数学上下册知识点归纳Word格式.docx》由会员分享,可在线阅读,更多相关《鲁教版小学五年级数学上下册知识点归纳Word格式.docx(24页珍藏版)》请在冰豆网上搜索。
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
6.积的近似数:
四舍五入是一种精确度的计数保留法,与其他方法本质相同。
但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:
假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。
7.数的互化
(1)小数化成分数
原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
(2)分数化成小数
用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
(3)化有限小数
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;
如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
(4)小数化成百分数
只要把小数点向右移动两位,同时在后面添上百分号。
(5)百分数化成小数
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
(6)分数化成百分数
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(7)百分数化成小数
先把百分数改写成分数,能约分的要约成最简分数。
8.小数的分类
(1)有限小数:
小数部分的数位是有限的小数,叫做有限小数。
例如:
41.7、25.3、0.23都是有限小数。
(2)无限小数:
小数部分的数位是无限的小数,叫做无限小数。
4.33……3.1415926……
(3)无限不循环小数:
一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
(4)循环小数:
一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
3.555……0.0333……12.109109……;
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
3.99……的循环节是“9”,0.5454……的循环节是“54”。
9.循环节:
如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。
把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。
10.简易方程:
方程ax±
b=c(a,b,c是常数)叫做简易方程。
11.方程:
含有未知数的等式叫做方程。
(注意方程是等式,又含有未知数,两者缺一不可)
方程和算术式不同。
算术式是一个式子,它由运算符号和已知数组成,它表示未知数。
方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。
12.方程的解
使方程左右两边相等的未知数的值,叫做方程的解。
如果两个方程的解相同,那么这两个方程叫做同解方程。
13.方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
14.解方程:
解方程,求方程的解的过程叫做解方程。
15.列方程解应用题的意义:
用方程式去解答应用题求得应用题的未知量的方法。
16.列方程解答应用题的步骤
(1)弄清题意,确定未知数并用x表示;
(2)找出题中的数量之间的相等关系;
(3)列方程,解方程;
(4)检查或验算,写出答案。
17.列方程解应用题的方法
(1)综合法
先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
(2)分析法
先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
18.列方程解应用题的范围:
小学范围内常用方程解的应用题:
(1)一般应用题;
(2)和倍、差倍问题;
(3)几何形体的周长、面积、体积计算;
(4)分数、百分数应用题;
(5)比和比例应用题。
19.平行四边形的面积公式:
底×
高(推导方法如图);
如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah
20.三角形面积公式:
S△=1/2*ah(a是三角形的底,h是底所对应的高)
21.梯形面积公式
(1)梯形的面积公式:
(上底+下底)×
高÷
2。
用字母表示:
(a+b)×
h÷
2
(2)另一计算公式:
中位线×
高
l·
h
(3)对角线互相垂直的梯形:
对角线×
对角线÷
2
扩展资料
1.小数分类
(1)纯小数:
整数部分是零的小数,叫做纯小数。
例如:
0.25、0.368都是纯小数。
(2)带小数:
整数部分不是零的小数,叫做带小数。
3.25、5.26都是带小数。
(3)纯循环小数:
循环节从小数部分第一位开始的,叫做纯循环小数。
3.111……0.5656……
(4)混循环小数:
循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222……0.03333……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
2.循环节的表示方法
小数化分数分成两类。
一类:
纯循环小数化分数,循环节做分子;
连写几个九作分母,循环节有几位写几个九。
另一类:
混循环小数化分数(问题就是这类的),小数部分减去不循环的数字作分子;
连写几个9再紧接着连写几个0作分母,循环节是几个数就写几个9,不循环(小数部分)的数是几个就写几个0。
3.平行四边形的面积
平行四边形的面积等于两组邻边的积乘以夹角的正弦值;
4.三角形的面积
(1)S△=1/2*ah(a是三角形的底,h是底所对应的高)
(2)S△=1/2acsinB=1/2bcsinA=1/2absinC(三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)
(3)S△=abc/(4R)(R是外接圆半径)
(4)S△=[(a+b+c)r]/2(r是内切圆半径)
(5)S△=c2sinAsinB/2sin(A+B)
五年级下册
知识点概括总结
1.轴对称:
如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。
对称轴:
折痕所在的这条直线叫做对称轴。
如下图所示:
2.轴对称图形的性质
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。
轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。
3.轴对称的性质
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
这样我们就得到了以下性质:
(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。
(4)对称轴是到线段两端距离相等的点的集合。
4.轴对称图形的作用
(1)可以通过对称轴的一边从而画出另一边;
(2)可以通过画对称轴得出的两个图形全等。
5.因数
整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。
在自然数的范围内例:
在算式6÷
2=3中,2、3就是6的因数。
6.自然数的因数(举例)
6的因数有:
1和6,2和3。
10的因数有:
1和10,2和5。
15的因数有:
1和15,3和5。
25的因数有:
1和25,5。
7.因数的分类
除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。
我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
8.倍数:
对于整数m,能被n整除(n/m),那么m就是n的倍数。
如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。
注意:
不能把一个数单独叫做倍数,只能说谁是谁的倍数。
9.完全数:
完全数又称完美数或完备数,是一些特殊的自然数。
它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
10.偶数:
整数中,能够被2整除的数,叫做偶数。
11.奇数:
整数中,能被2整除的数是偶数,不能被2整除的数是奇数,
12.奇数偶数的性质
关于奇数和偶数,有下面的性质:
(1)奇数不会同时是偶数;
两个连续整数中必是一个奇数一个偶数;
(2)奇数跟奇数和是偶数;
偶数跟奇数的和是奇数;
任意多个偶数的和都是偶数;
(3)两个奇(偶)数的差是偶数;
一个偶数与一个奇数的差是奇数;
(4)除2外所有的正偶数均为合数;
(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。
(6)奇数的积是奇数;
偶数的积是偶数;
奇数与偶数的积是偶数;
(7)偶数的个位上一定是0、2、4、6、8;
奇数的个位上是1、3、5、7、9。
13.质数:
指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。
14.合数:
比1大但不是素数的数称为合数。
1和0既非素数也非合数。
合数是由若干个质数相乘而得到的。
质数是合数的基础,没有质数就没有合数。
15.长方体:
由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。
16.长、宽、高:
长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
17.长方体的特征:
(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。
特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。
(2)长方体有12条棱,相对的棱长度相等。
可分为三组,每一组有4条棱。
还可分为四组,每一组有3条棱。
(3)长方体有8个顶点。
每个顶点连接三条棱。
(4)长方体相邻的两条棱互相(相互)垂直。
18.长方体的表面积
因为相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。
设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:
S
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁教版 小学 年级 数学 上下册 知识点 归纳