七年级应用题专项练习精品文档Word文档下载推荐.docx
- 文档编号:14752534
- 上传时间:2022-10-24
- 格式:DOCX
- 页数:13
- 大小:64.85KB
七年级应用题专项练习精品文档Word文档下载推荐.docx
《七年级应用题专项练习精品文档Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《七年级应用题专项练习精品文档Word文档下载推荐.docx(13页珍藏版)》请在冰豆网上搜索。
1.倍数关系:
通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
2.多少关系:
通过关键词语“多、少、和、差、不足、剩余……”来体现。
增长量=原有量×
增长率现在量=原有量+增长量
例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?
例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?
(二)等积变形问题
等积变形是以形状改变而体积不变为前提。
常用等量关系为:
原料体积=成品体积。
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式V=底面积×
高=S·
h=
②长方体的体积V=长×
宽×
高=abc
例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?
(三)数字问题
1.要搞清楚数的表示方法:
一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9),则这个三位数表示为:
100a+10b+c.
2.数字问题中一些表示:
两个连续整数之间的关系,较大的比较小的大1;
偶数用2n表示,连续的偶数用2n+2或2n-2表示;
奇数用2n+1或2n—1表示。
例4.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
例5.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.
(四)商品利润问题(市场经济问题或利润赢亏问题)
(1)销售问题中常出现的量有:
进价(或成本)、售价、标价(或定价)、利润等。
(2)利润问题常用等量关系:
商品利润=商品售价-商品进价=商品标价×
折扣率-商品进价
(3)商品销售额=商品销售价×
商品销售量
商品的销售利润=(销售价-成本价)×
销售量
(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×
折扣率.
例6:
一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
例6*:
某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折?
(五)行程问题——画图分析法
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
1.行程问题中的三个基本量及其关系:
路程=速度×
时间时间=路程÷
速度速度=路程÷
时间
2.行程问题基本类型
(1)相遇问题:
快行距+慢行距=原距
(2)追及问题:
快行距-慢行距=原距
(3)航行问题:
顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
水流速度=(顺水速度-逆水速度)÷
2(4)环路问题甲乙同时同地背向而行:
甲路程—乙路程=环路一周的距离
甲乙同时同地同向而行:
快者的路程—慢者的路程=环路一周的距离
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:
顺水路程=逆水路程.
常见的还有:
相背而行;
行船问题;
环形跑道问题。
例7:
甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)
例8:
一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。
(六)工程问题
1.工程问题中的三个量及其关系为:
工作总量=工作效率×
工作时间
2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.
工程问题常用等量关系:
先做的+后做的=完成量.
例9:
将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
例10:
一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;
单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?
例11:
一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?
(七)储蓄问题
1.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.
2.储蓄问题中的量及其关系为:
利息=本金×
利率×
期数本息和=本金+利息
利息税=利息×
税率(20%)
例12:
某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7元,求银行半年期的年利率是多少?
(不计利息税)
(八)配套问题:
这类问题的关键是找对配套的两类物体的数量关系。
例13:
某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
例14:
机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
(九)劳力调配问题
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变。
例15.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?
例16.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
(十)比例分配问题
比例分配问题的一般思路为:
设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系:
各部分之和=总量。
例17:
甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:
3;
乙、丙之比为6:
5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?
(十一)年龄问题
例19:
兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
例20:
三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和是41,求乙同学的年龄。
(十二)比赛积分问题
例21:
某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:
每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了道题。
例22:
某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。
某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?
(13)方案选择问题
例23:
某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
(14)古典数学问题
例24:
100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚?
多少小和尚?
例25:
有若干只鸡和兔子,他们共有88个头,244只脚,鸡和兔各有多少只?
(15)增长率问题
例26:
民航规定:
乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。
一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。
(16)浓度问题
常用等量关系式:
.
例27:
有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水7.5千克。
某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50%的硫酸多少千克?
例28:
有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少?
补偿练习:
1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?
优惠价是多少元?
2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?
若设这种自行车每辆的进价是x元,那么所列方程为()
A.45%×
(1+80%)x-x=50B.80%×
(1+45%)x-x=50
C.x-80%×
(1+45%)x=50D.80%×
(1-45%)x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 应用题 专项 练习 精品 文档