历年高考抛物线真题详解理科Word格式.docx
- 文档编号:14715143
- 上传时间:2022-10-24
- 格式:DOCX
- 页数:19
- 大小:749.92KB
历年高考抛物线真题详解理科Word格式.docx
《历年高考抛物线真题详解理科Word格式.docx》由会员分享,可在线阅读,更多相关《历年高考抛物线真题详解理科Word格式.docx(19页珍藏版)》请在冰豆网上搜索。
A.B.C.D.
7.【2017课标II,理16】已知是抛物线的焦点,是上一点,的延长线交轴于点。
若为的中点,则
8.【2016高考天津理数】设抛物线,(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为,则p的值为_________.
10.【2017北京,理18】已知抛物线C:
y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:
A为线段BM的中点.
11.【2016高考江苏卷】
(本小题满分10分)
如图,在平面直角坐标系xOy中,已知直线,抛物线
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:
线段PQ的中点坐标为;
②求p的取值范围.
12.【2017浙江,21】
(本题满分15分)如图,已知抛物线,点A,,抛物线上的点.过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求的最大值.
13.【2016高考新课标3理数】已知抛物线:
的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.
(I)若在线段上,是的中点,证明;
(II)若的面积是的面积的两倍,求中点的轨迹方程.
【答案】A
【解析】试题分析:
设,直线方程为
联立方程得∴
同理直线与抛物线的交点满足
由抛物线定义可知
当且仅当(或)时,取得等号.
【考点】抛物线的简单性质
【答案】C
【解析】
试题分析:
设(不妨设),则由已知得,,,,,故选C.
考点:
抛物线的简单的几何性质,基本不等式的应用.
【名师点睛】本题考查抛物线的性质,结合题意要求,利用抛物线的参数方程表示出抛物线上点的坐标,利用向量法求出点的坐标,是我们求点坐标的常用方法,由于要求最大值,因此我们把斜率用参数表示出后,可根据表达式形式选用函数,或不等式的知识求出最值,本题采用基本不等式求出最值.
【答案】B
抛物线的性质。
【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.
【答案】D
显然当直线的斜率不存在时,必有两条直线满足题设.当直线的斜率存在时,设斜率为.设,则,相减得.由于,所以,即.圆心为,由得,所以,即点M必在直线上.将代入得.因为点M在圆上,所以.又(由于斜率不存在,故,所以不取等号),所以.选D.
利用这个范围即可得到r的取值范围。
【答案】A.
【解析】,故选A.
【考点定位】抛物线的标准方程及其性质
【名师点睛】本题主要考查了抛物线的标准方程及其性质,属于中档题,解题时,需结合平面几何中同高的三角形面积比等于底边比这一性质,结合抛物线的性质:
抛物线上的点到准线的距离等于其到焦点的距离求解,在平面几何背景下考查圆锥曲线的标准方程及其性质,是高考中小题的热点,在复习时不能遗漏相应平面几何知识的复习.
7.【2017课标II,理16】已知是抛物线的焦点,是上一点,的延长线交轴于点。
若为的中点,则。
【答案】6
点A,
【考点】抛物线的定义;
梯形中位线在解析几何中的应用。
【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化。
如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题。
因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化。
【答案】
抛物线的普通方程为,,,又,则,由抛物线的定义得,所以,则,由得,即,所以,,所以,.
抛物线定义
【名师点睛】1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.
2.若P(x0,y0)为抛物线y2=2px(p>0)上一点,由定义易得|PF|=x0+;
若过焦点的弦AB的端点坐标为A(x1,y1),B(x2,y2),则弦长为|AB|=x1+x2+p,x1+x2可由根与系数的关系整体求出;
若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.
9.【2016高考浙江理数】若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是_______.
抛物线的定义.
【思路点睛】当题目中出现抛物线上的点到焦点的距离时,一般会想到转化为抛物线上的点到准线的距离.解答本题时转化为抛物线上的点到准线的距离,进而可得点到轴的距离.
(Ⅰ)方程为,抛物线C的焦点坐标为(,0),准线方程为.(Ⅱ)详见解析.
(Ⅰ)代入点求得抛物线的方程,根据方程表示焦点坐标和准线方程;
(Ⅱ)设直线l的方程为(),与抛物线方程联立,得到根与系数的关系,直线ON的方程为,联立求得点的坐标,证明.
试题解析:
解:
(Ⅰ)由抛物线C:
过点P(1,1),得.
所以抛物线C的方程为.
抛物线C的焦点坐标为(,0),准线方程为.
,
所以.
故A为线段BM的中点.
【考点】1.抛物线方程;
2.直线与抛物线的位置关系
【名师点睛】本题考查了直线与抛物线的位置关系,考查了转换与化归能力,当看到题目中出现直线与圆锥曲线时,不需要特殊技巧,只要联立直线与圆锥曲线的方程,借助根与系数关系,找准题设条件中突显的或隐含的等量关系,把这种关系“翻译”出来,有时不一定要把结果及时求出来,可能需要整
体代换到后面的计算中去,从而减少计算量.
(1)
(2)①详见解析,②
值范围。
(2)设,线段PQ的中点
因为点P和Q关于直线对称,所以直线垂直平分线段PQ,
于是直线PQ的斜率为,则可设其方程为
①由消去得
因为P和Q是抛物线C上的相异两点,所以
从而,化简得.
方程(*)的两根为,从而
因为在直线上,所以
因此,线段PQ的中点坐标为
②因为在直线上
所以,即
由①知,于是,所以
因此的取值范围为
直线与抛物线位置关系
(Ⅰ);
(Ⅱ)
(Ⅰ)由两点求斜率公式可得AP的斜率为,由,得AP斜率的取值范围;
(Ⅱ)联立直线AP与BQ的方程,得Q的横坐标,进而表达与的长度,通过函数求解的最大值.
(Ⅰ)设直线AP的斜率为k,则,∵,∴直线AP斜率的取值范围是.
(Ⅱ)联立直线AP与BQ的方程
解得点Q的横坐标是,因为|PA|==
|PQ|=,所以|PA||PQ|=
令,因为,所以f(k)在区间上单调递增,上单调递减,因此当k=时,取得最大值.
的最大值。
(Ⅰ)见解析;
(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 历年 高考 抛物线 详解 理科