历年希望杯初一竞赛试题精选及答案Word文档格式.docx
- 文档编号:14692054
- 上传时间:2022-10-23
- 格式:DOCX
- 页数:26
- 大小:224.98KB
历年希望杯初一竞赛试题精选及答案Word文档格式.docx
《历年希望杯初一竞赛试题精选及答案Word文档格式.docx》由会员分享,可在线阅读,更多相关《历年希望杯初一竞赛试题精选及答案Word文档格式.docx(26页珍藏版)》请在冰豆网上搜索。
A.奇数.B.偶数.C.负整数.D.非负整数.
5.某同学求出1991个有理数的平均数后,粗心地把
这个平均数和原来的1991个有理数混在一起,成为1992个有理数,而忘掉哪个是平均数了.如果这1992个有理数的平均数恰为1992.则原来的1991个有理数的平均数是[]
A.1991.5.B.1991.C.1992.D.1992.5.
6.四个互不相等的正数a,b,c,d中,a最大,d最小,且,则a+d与b+c的大小关系是[]
A.a+d<b+c.B.a+d>b+c.C.a+d=b+c.D.不确定的.
7.已知p为偶数,q为奇数,方程组的解是整数,那么[]
A.x是奇数,y是偶数.B.x是偶数,y是奇数.
C.x是偶数,y是偶数.D.x是奇数,y是奇数.
8.若x-y=2,x2+y2=4,则x1992+y1992的值是[]
A.4.B.19922.C.21992.D.41992.
9.如果x,y只能取0,1,2,3,4,5,6,7,8,9中的数,并且3x-2y=1,那么代数式10x+y可以取到[]不同的值.
A.1个.B.2个.C.3个.D.多于3个的.
10.某中学科技楼窗户设计如图15所示.如果每个符号(窗户形状)代表一个阿拉伯数码,每横行三个符号自左至右看成一个三位数.这四层组成四个三位数,它们是837,571,206,439.则按照图15中所示的规律写出1992应是图16中的[]
二、填空题(每题1分,共10分)
1.a,b,c,d,e,f是六个有理数,关且则=_____.
2.若三个连续偶数的和等于1992.则这三个偶数中最大的一个与最小的一个的平方差等于______.
3.若x3+y3=1000,且x2y-xy2=-496,则(x3-y3)+(4xy2-2x2y)-2(xy2-y3)=______.
4.三个互不相等的有理数,既可表示为1,a+b,a的形式,又可表示为0,,b,的形式,则a1992+b1993=________.
5.海滩上有一堆核桃.第一天猴子吃掉了这堆核桃的个数的,又扔掉4个到大海中去,第二天吃掉的核桃数再加上3个就是第一天所剩核桃数的,那么这堆核桃至少剩下____个.
6.已知不等式3x-a≤0的正整数解恰是1,2,3.那么a的取值范围是______.
7.a,b,c是三个不同的自然数,两两互质.已知它们任意两个之和都能被第三个整除.则a3+b3+c3=______.
8.若a=1990,b=1991,c=1992,则a2+b2+c2-ab-bc-ca=______.
9.将2,3,4,5,6,7,8,9,10,11这个10个自然数填到图17中10个格子里,每个格子中只填一个数,使得田字形的4个格子中所填数字之和都等于p.则p的最大值是______.
10.购买五种教学用具A1,A2,A3,A4,A5的件数和用钱总数列成下表:
那么,购买每种教具各一件共需______元.
三、解答题(每题5分,共10分)
1.将分别写有数码1,2,3,4,5,6,7,8,9的九张正方形卡片排成一排,发现恰是一个能被11整除的最大的九位数.请你写出这九张卡片的排列顺序,并简述推理过程.
2.一个自然数a,若将其数字重新排列可得一个新的自然数b.如果a恰是b的3倍,我们称a是一个“希望数”.
(1)请你举例说明:
“希望数”一定存在.
(2)请你证明:
如果a,b都是“希望数”,则ab一定是729的倍数.
答案与提示
一、选择题
提示:
所以将8.0473=512.077119823的小数点向前移三位得0.512077119823,即为0.80473的值,选A.
2.设该数为a,由题意-a为a的相反数,且有a3<-a,
∴a3+a<0,a(a2+1)<0,
因为a2+1>0,所以a<0,即该数一定是负数,选B.
3.已知a>0,b<0,a<|b|.在数轴上直观表示出来,b到原点的距离大于a到原点的距离,如图18所示.所以-b>a>-a>b,选A.
4.由于两个整数a,b前面任意添加“+”号或“-”号,其代数和的奇偶性不变.这个性质对n个整数也是正确的.因此,
1,2,3…,1991,1992,的每一个数前面任意添上“+”号或“-”号,其代数和的奇偶性与(-1)+2-3+4-5+6-7+8-…-1991+1992=996的奇偶性相同,是偶数,所以选B.
5.原来1991个数的平均数为m,则这个1991个数总和为m×
1991.当m混入以后,那1992个数之和为m×
1991+m,其平均数是1992,
∴m=1992,选C.
6.在四个互不相等的正数a,b,c,d中,a最大,d最小,因此有a>b,a>c,a>d,b>d,c>d.
所以a+b>b+c,成立,选B.
7.由方程组
以及p为偶数,q为奇数,其解x,y又是整数.
由①可知x为偶数,由②可知y是奇数,选B.
8.由x-y=2①
平方得x2-2xy+y2=4②
又已知x2+y2=4③
所以x,y中至少有一个为0,但x2+y2=4.因此,x,y中只能有一个为0,另一个为2或-2.无论哪种情况,都有
x1992+y1992=01992+(±
2)1992=21992,选C.
9.设10x+y=a,又3x-2y=1,代入前式得
由于x,y取0—9的整数,10x+y=a的a值取非负整数.由(*)式知,要a为非负整数,23x必为奇数,从而x必取奇数1,3,5,7,9.
三个奇数值,y相应地取1,4,7这三个值.这时,a=10x+y可以取到三个不同的值11,34和57,选C.
二、填空题
与666,所以最大的一个偶数与最小的一个偶数的平方差等于
6662-6622=(666+662)(666-662)=1328×
4=5312.
3.由于x3+y3=1000,且x2y-xy2=-496,因此要把(x3-y3)+(4xy2-2x2y)-2(xy2-y3)分组、凑项表示为含x3+y3及x2y-xy2的形式,以便代入求值,为此有
(x3-y3)+(4xy2-2x2y)-2(xy2-y3)=x3+y3+2xy2-2x2y=(x3+y3)-2(x2y-xy2)=1000-2(-496)=1992.
4.由于三个互不相等的有理数,既可表示为1,
下,只能是b=1.于是a=-1.
所以,a1992+b1993=(-1)1992+
(1)1993=1+1=2.
5.设这堆核桃共x个.依题意
我们以m表示这堆核桃所剩的数目(正整数),即
目标是求m的最小正整数值.
可知,必须20|x即x=20,40,60,80,……
m为正整数,可见这堆核桃至少剩下6个.
由于x取整数解1、2、3,表明x不小于3,
即9≤a<12.
可被第三个整除,应有b|a+c.
∴b≥2,但b|2,只能是b=2.
于是c=1,a=3.因此a3+b3+c3=33+23+13=27+8+1=36.
8.因为a=1990,b=1991,c=1992,所以
a2+b2+c2-ab-bc-ca
9.将2,3,4,5,6,7,8,9,10,11填入这10个格子中,按田字格4个数之和均等于p,其总和为3p,其中居中2个格子所填之数设为x与y,则x、y均被加了两次,所以这3个田字形所填数的总和为2+3+4+5+6+7+8+9+10+11+x+y=65+x+y
于是得3p=65+x+y.
要p最大,必须x,y最大,由于x+y≤10+11=21.
所以3p=65+x+y≤65+21=86.
所以p取最大整数值应为28.
事实上,如图19所示可以填入这10个数使得p=28成立.
所以p的最大值是28.
10.设A1,A2,A3,A4,A5的单价分别为x1,x2,x3,x4,x5元.
则依题意列得关系式如下:
③×
2-④式得
x1+x2+x3+x4+x5=2×
1992-2984=1000.
所以购买每种教具各一件共需1000元.
三、解答题
1.解①(逻辑推理解)
我们知道,用1,2,3,4,5,6,7,8,9排成的最大九位数是987654321.但这个数不是11倍的数,所以应适当调整,寻求能被11整除的最大的由这九个数码组成的九位数.
设奇位数字之和为x,偶位数字之和为y.
则x+y=1+2+3+4+5+6+7+8+9=45.
由被11整除的判别法知
x-y=0,11,22,33或44.
但x+y与x-y奇偶性相同,而x+y=45是奇数,所以x-y也只能取奇数值11或33.
于是有
但所排九位数偶位数字和最小为1+2+3+4=10>6.所以(Ⅱ)的解不合题意,应该排除,由此只能取x=28,y=17.
987654321的奇位数字和为25,偶位数字和为20,所以必须调整数字,使奇位和增3,偶位和减3才行。
为此调整最后四位数码,排成987652413即为所求.
解②(观察计算法)
987654321被11除余5.因此,987654316是被11整除而最接近987654321的九位数.但987654316并不是由1,2,3,4,5,6,7,8,9排成的,其中少数字2,多数字6.于是我们由987654316开始,每次减去11,直到遇到恰由1,2,3,4,5,6,7,8,9九个数字组成的九位数为止.其过程是
987654316→987654305→987654294→987654283
→987654272→987654261→987654250→987654239
→987654228→987654217→987654206→987654195
→987654184→……→987652435→987652424
→987652413.
这其间要减去173次11,最后得出一个恰由九个数码组成的九位数987652413,为所求,其最大性是显见的,这个方法虽然操作173次,但算量不繁,尚属解决本题的一种可行途径,有一位参赛学生用到了此法,所以我们整理出来供大家参考.
2.
(1)答:
由于428571=3×
142857,所以428571是一个“希望数”.
说明:
一个自然数a,若将其数字重新排列可得一个新的自然数b.如果a恰是b的3倍,我们称a是一个“希望数”.这实际上给出了“希望数”的定义。
考察参赛学生阅读理解定义的能力,并能举例说明被定义的对象存在.在一位数、二位数、三位数中找不到“希望数”.而在四位数中很容易找到实例.
如:
3105=3×
1035,所以3105是个“希望数”;
或:
7425=3×
2475,所以7425是个“希望数”;
857142
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 历年 希望 初一 竞赛 试题 精选 答案