全等三角形难题集锦(整理).docx
- 文档编号:146579
- 上传时间:2022-10-04
- 格式:DOCX
- 页数:15
- 大小:670.14KB
全等三角形难题集锦(整理).docx
《全等三角形难题集锦(整理).docx》由会员分享,可在线阅读,更多相关《全等三角形难题集锦(整理).docx(15页珍藏版)》请在冰豆网上搜索。
1、
(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小;
(2)如图2,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.
图1图2
2、
(1)如图1,现有一正方形ABCD,将三角尺的指直角顶点放在A点处,两条直角边也与CB的延长线、DC分别交于点E、F.请你通过观察、测量,判断AE与AF之间的数量关系,并说明理由.
(2)将三角尺沿对角线平移到图2的位置,PE、PF之间有怎样的数量关系,并说明理由.
(3)如果将三角尺旋转到图3的位置,PE、PF之间是否还具有
(2)中的数量关系?
如果有,请说明
3、、分别是正方形的边、上的点,且,,为垂足,求证:
.
A
B
C
E
D
O
P
Q
4、C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边和等边,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:
①AD=BE;②;③AP=BQ;
④DE=DP;⑤⑥CP=CQ⑦△CPQ为等边三角形.
⑧共有2对全等三角形⑨CO平分⑩CO平分
恒成立的结论有______________(把你认为正确的序号都填上).
5、D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。
(1)当绕点D转动时,求证:
DE=DF。
(2)若AB=2,求四边形DECF的面积。
6、如图,是正三角形,△BDC是顶角的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.探究:
线段BM、MN、NC之间的关系,并加以证明.
7、点C为线段AB上一点,△ACM,△CBN都是等边三角形,线段AN,MC交于点E,BM,CN交于点F。
求证:
(1)AN=MB.
(2)将△ACM绕点C按逆时针方向旋转一定角度,如图②所示,其他条件不变,
(1)中的结论是否依然成立?
(3)AN与BM相交所夹锐角是否发生变化。
图①图②
8、复习“全等三角形”的知识时,老师布置了一道作业题:
“如图①,已知在中,AB=AC,P是内部任意一点,将AP绕A顺时针旋转至AQ,使,连接BQ、CP,则BQ=CP.”
小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.
9、将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片和.且≌。
将这两张三角形胶片的顶点与顶点重合,把绕点顺时针方向旋转,这时与相交于点.
①当旋转至如图②位置,点,,在同一直线上时,与的数量关系是.
②当继续旋转至如图③位置时,
(1)中的结论还成立吗?
与存在怎样的数量关系?
请说明理由.
10、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.
(1)请找出图2中的全等三角形,并给予证明(说明:
结论中不得含有未标识的字母);
(2)证明:
DC⊥BE.
图1
图2
D
C
E
A
B
11、两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,,,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.
12、如图,AD//BC,AD=BC,AE⊥AD,AF⊥AB,且AE=AD,AF=AB,求证:
AC=EF
13、如图,AE⊥AB,AD⊥AC,AB=AE,∠B=∠E,求证:
(1)BD=CE;
(2)BD⊥CE.
14、如图,BF⊥AC于点F,CE⊥AB于点E,且BD=CD。
求证:
(1)△BDE≌△CDF;
(2)点D在∠A的平分线上
15、如图1,A、E、F、C在同一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,
(1)若AB=CD,试说明BD平分EF;
(2)若将△DEC的边EC沿AC方向移动变为图2时,其余条件不变,BD是否还平分EF,请说明理由。
16、如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:
(1)如图②,在中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。
请你判断并写出FE与FD之间的数量关系;
(2)如图③,在中,如果∠ACB不是直角,而
(1)中的其它条件不变,请问,你在
(1)中所得结论是否仍然成立?
若成立,请证明;若不成立,请说明理由。
O
P
A
M
N
E
B
C
D
F
A
C
E
F
B
D
图①
图②
图③
17、如图1,点M为锐角内任意一点,连接AM、BM、CM.以AB为一边向外作等边,将BM绕点B逆时针旋转60°得到BN,连接EN.
(1)求证:
△AMB≌△ENB;
(2)若AM+BM+CM的值最小,则称点M为的费尔马点.若点M为的费尔马点,试求此时、、的度数;
(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:
如图2,分别以的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为的费尔马点.试说明这种作法的依据.
18、如图1,四边形ABCD是正方形,M是AB延长线上一点。
直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.
(1)如图1,当点E在AB边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;
③请证明你的上述两猜想.
(2)如图2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系并证明
图1图2
19、如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:
①AF=DE;②AF⊥DE.(不需要证明)
(1)如图2,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF.则上面的结论①、②是否仍然成立?
(请直接回答“成立”或“不成立”)
(2)如图3,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?
若成立,请写出证明过程;若不成立,请说明理由.
20、如图1、图2、图3,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90º,
(1)在图1中,AC与BD相等吗,有怎样的位置关系?
请说明理由。
(2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗?
为什么?
(3)若△COD绕点O顺时针旋转一定角度后,到达图3的位置,请问AC与BD还相等吗?
还具有上问中的位置关系吗?
为什么?
21、如图1,在中,BC边在直线l上,AC⊥BC,且AC=BC.△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.
(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;
(2)将△EFP沿直线l向左平移到图14-2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;
(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为
(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?
若成立,给出证明;若不成立,请说明理由.
图1
(
F
)
B
C
P
A(E)
l
l
P
A
E
B
C
Q
F
图2
l
B
P
A
图3
E
F
Q
C
22、如图①所示,在和中,,,,且点,,在一条直线上,连接,,,分别为的中点.
(1)求证:
①;②;
(2)在图①的基础上,将绕点按顺时针方向旋转,其他条件不变,得到图②所示的图形.请直接写出
(1)中的两个结论是否仍然成立.
C
E
N
D
A
B
M
图①
C
A
E
M
B
D
N
图②
23、数学课上,张老师出示了问题:
如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平分线CF于点F,求证:
AE=EF.
经过思考,小明展示了一种正确的解题思路:
取AB的中点M,连接ME,则AM=EC,易证≌,所以.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:
如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?
如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:
如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?
如果正确,写出证明过程;如果不正确,请说明理由.
A
D
F
C
G
E
B
图1
A
D
F
C
G
E
B
图2
A
D
F
C
G
E
B
图3
24、问题背景,如下命题:
①如图1,在正三角形ABC中,N为BC边上任一点,CM为正三角形外角∠ACK的平分线,若,则AN=NM。
②如图2,在正方形ABCD中,N为BC边上任一点,CM为正方形外角∠DCK的平分线,若,则AN=NM。
③如图3,在正五边形ABCDE中,N为BC边上任一点,CM为正五边形外角∠DCK的平分线,若,则AN=NM。
任务要求:
(1)请你证明以上三个命题;
(2)请你继续完成下面的探索:
①如图4,在正(≥3)边形ABCDEF…中,N为BC边上任一点,CM为正边形外角∠DCK的平分线,问当∠ANM等于多少度时,结论AN=NM成立(不要求证明).
②如图5,在梯形ABCD中,AD∥BC,AB=BC=CD,N为BC延长线上一点,CM为∠DCN的平分线,若∠ANM=∠ABC,请问AN=NM是否还成立?
若成立,请给予证明;若不成立,请说明理由.
25、已知∠AOB=90°,∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与点C重合,它的两条直角边分别与OA、OB或它们的反向延长线相交于D、E。
(1)当三角形绕点C旋转到CD与OA垂直时(如图1),易证:
CD=CE
(2)当三角板绕点C旋转到CD与OA不垂直时,在图2图3这两种情况下,上述结论是否成立,请给予证明,若不成立,请写出你的猜想,不需证明。
26、已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积
27、已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。
求证:
(1)EC=BF;
(2)EC⊥BF
28、已知BE,CF是的高,且BP=AC,CQ=AB,试确定AP与A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 难题 集锦 整理