相交线与平行线讲义2Word格式.doc
- 文档编号:14647093
- 上传时间:2022-10-23
- 格式:DOC
- 页数:11
- 大小:1.14MB
相交线与平行线讲义2Word格式.doc
《相交线与平行线讲义2Word格式.doc》由会员分享,可在线阅读,更多相关《相交线与平行线讲义2Word格式.doc(11页珍藏版)》请在冰豆网上搜索。
⑹平行线的判定推论:
二、探索思考
探索一:
请同学们仔细阅读课本P19页,完成课本上的探究.根据探究内容,我们可以得到平行线的性质,如图,将下列空白补充完整(填1种就可以)
性质1(性质公理)
几何语言表述为:
∵AB∥CD∴∠___=∠___
由性质1,结合对顶角的性质,我们可以得到:
性质2(性质定理)
由性质1,结合邻补角的性质,我们可以得到:
C
1
2
3
4
5
B
A
D
性质3(性质定理)
∵AB∥CD∴∠___+∠___=
练习一:
1.根据右图将下列几何语言补充完整
(1)∵AD∥(已知)
E
∴∠A+∠ABC=180°
()
(2)∵AB∥(已知)
∴∠4=∠()
∠ABC=∠()
2.如右图所示,BE平分∠ABC,DE∥BC,图中相等的角共有()
A.3对B.4对C.5对D.6对
3、如图,AB∥CD,∠1=45°
∠D=∠C,求∠D、∠C、∠B的度数.
探索二:
用三角尺和直尺画平行线,做成一张5×
5个格子的方格纸.观察做出的方格纸的一部分(如图),线段、、…、都与两条平行的横线和垂直吗?
它们的长度相等吗?
像这样,同时垂直于两条平行直线,并且夹在这两条平行线间的线段的长度相等,叫做这两条平
行线间的距离,即平行线间的距离处处相等.
练习二:
1.如图所示,已知直线AB∥CD,且被直线EF所截,若∠1=50°
,则∠2=____,∠3=______.
(1题)(2题)(3题)
2.如图所示,AB∥CD,AF交CD于E,若∠CEF=60°
,则∠A=______.
3.如图所示,已知AB∥CD,BC∥DE,∠1=120°
,则∠2=______.
三、当堂反馈
1.如图所示,如果AB∥CD,那么().
A.∠1=∠4,∠2=∠5B.∠2=∠3,∠4=∠5
C.∠1=∠4,∠5=∠7D.∠2=∠3,∠6=∠8
(1题)(2题)(3题)
2.如图所示,DE∥BC,EF∥AB,则图中和∠BFE互补的角有().
A.3个B.2个C.5个D.4个
3.如图所示,已知∠1=72°
,∠2=108°
,∠3=69°
,求∠4的度数.
平行线的判定及性质习题课
【学习目标】加深对平行线的判定及性质的理解及其应用.
通过前面的学习,你还知道两条直线平行有哪些性质吗?
⑴根据平行线的定义:
⑵平行线的性质公理:
⑶平行线的性质定理1:
⑷平行线的性质定理2:
⑸平行线间的距离.
练习:
让我先试试,相信我能行.
1.如图1,若∠1=∠2,那么_____∥______,根据_____.
若a∥b,那么∠3=_____,根据_____.
(图1)(图2)(图3)(图4)
2.如图2,∵∠1=∠2,∴_______∥_______,根据________.
∴∠B=______,根据________.
3.如图3,若AB∥CD,那么________=_______;
若∠1=∠2,那么_____∥_____;
若BC∥AD,那么_______=_______;
若∠A+∠ABC=180°
,那么______∥_____
4.如图4,一条公路两次拐弯后,和原来的方向相同,如果第一次拐的角是136°
(即∠ABC),那么第二次拐的角(∠BCD)是度,根据___.
5.如右图,修高速公路需要开山洞,为节省时间,要在山两面A,B
同时开工,在A处测得洞的走向是北偏东76°
12′,那么在B处
应按什么方向开口,才能使山洞准确接通,请说明其中的道理.
6.如右图所示,潜望镜中的两个镜子是互相平行放置的,光线经过
镜子反射∠1=∠2,∠3=∠4,请你解释为什么开始进入潜望镜的光
线和最后离开潜望镜的光线是平行的.
1.已知如图1,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=74°
,那么吸管与易拉罐下部夹角∠2=_______.
2.已知如图2,边OA,OB均为平面反光镜,∠AOB=40°
,在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是().
A.60°
B.80°
C.100°
D.120°
(图1)(图2)(图3)
3.如图3,已知∠1+∠2=180°
,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.
4.如图,直线DE经过点A,DE∥BC,∠B=44°
∠C=85°
.⑴求∠DAB的度数;
⑵求∠EAC的度数;
⑶求∠BAC的度数;
⑷通过这道题你能说明为什么三角形的内角和是180°
吗?
5.3.2命题、定理
【学习目标】了解命题、定理的概念,能够区分命题的题设和结论.
歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“独路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,边走边大声说道:
“我从来不给傻子让路!
”而对如此的尴尬的局面,歌德笑容可掏,谦恭的闪在一旁,有礼貌地回答道“呵呵,我可恰相反”,结果故作聪明的批评家,反倒自讨没趣.你知道为什么吗?
探索:
在日常生活中,我们会遇到许多类似的情况,需要对一些事情作出判断,例如:
⑴今天是晴天;
⑵对顶角相等;
⑶如果两条直线都与第三条直线平行,那么这两条直线也互相平行.像这样,判断一件事情的语句,叫做命题.
每个命题都是由_______和______组成.每个命题都可以写成.“如果……,那么……”的形式,用“如果”开始的部份是,用“那么”开始的部份是.
像前面举例中的⑵⑶两个命题,都是正确的,这样的命题叫做真命题,即正确的命题叫做______.
例如:
“如果一个数能被2整除,那么这个数能被4整除”,很明显是错误的命题,这样的命题叫做假命题,即错误的命题叫做______.
我们把从长期的实践活动中总结出来的正确命题叫做公理;
通过正确的推理得出的真命题叫做定理.
1.下列语句是命题的个数为()
①画∠AOB的平分线;
②直角都相等;
③同旁内角互补吗?
④若│a│=3,则a=3.
A.1个B.2个C.3个D.4个
2.下列5个命题,其中真命题的个数为()
①两个锐角之和一定是钝角;
②直角小于夹角;
③同位角相等,两直线平行;
④内错角互补,两直线平行;
⑤如果a<
b,b<
c,那么a<
c.
A.1个B.2个C.3个D.4个
3.下列说法正确的是()
A.互补的两个角是邻补角B.两直线平行,同旁内角相等
C.“同旁内角互补”不是命题D.“相等的两个角是对顶角”是假命题
4.“同一平面内,垂直于同一条直线的两条直线互相平行”是命题,其中,题设
是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相交 平行线 讲义