平行四边形(培养竞赛新方法十年典藏)Word下载.doc
- 文档编号:14644976
- 上传时间:2022-10-23
- 格式:DOC
- 页数:6
- 大小:249KB
平行四边形(培养竞赛新方法十年典藏)Word下载.doc
《平行四边形(培养竞赛新方法十年典藏)Word下载.doc》由会员分享,可在线阅读,更多相关《平行四边形(培养竞赛新方法十年典藏)Word下载.doc(6页珍藏版)》请在冰豆网上搜索。
③DN=2NF;
④S△AMB=S△ABC.其中正确的结论有
(2)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD、△ACE、△BCF都是
等边三角形,则四边形AEFD的面积为
例2、已知四边形ABCD,从下列条件中,①AB∥CD;
②BC∥AD;
③AB=CD;
④BC=AD;
⑤∠A=∠C;
⑥∠B=∠D.任取其中两个,可以得出“四边形ABCD一定是平行四边形”这一结论的情况有()种
A.4B.9C.13D.15
例3、如图,四边形ABCD的对角线AC,BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.求证:
四边形ABCD是平行四边形.
例4、如图,四边形ABCD为平行四边形,AD=a,BE//AC,DE交AC的延长线于F点,交BE于E点.
(1)求证:
DF=FE;
(2)若AC=2CF,∠ADC=60°
AC⊥DC,求BE的长;
(3)在
(2)的条件下,求四边形ABED的面积.
例5在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°
G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°
FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
例6、如图,△ABC中,∠C=90°
,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P,求∠BPM的度数.
过手训练:
1、如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC于点E,则EC=______.
2、如图,平行四边形ABCD中,∠ABC=60°
,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为
3、如图所示,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,∠NDC=∠MDA,则平行四边形ABCD的周长为
4、已知一个四边形ABCD的边长分别为a,b,c,d,其中a,c为对边,且则此四边形是
5、如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边三角形△ABE、△ADF,延长CB交AE于点G(点G在点A、E之间),连接CE、CF、EF,则以下四个结论中,正确的个数是( )
①△CDF≌△EBC;
②∠CDF=∠EAF;
③△CEF是等边三角形;
④CG⊥AE.
A.1个B.2个C.3个D.4个
6、在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形的面积为1,则□ABCD的面积为()
A.2B.C.
7、如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)
关系:
①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°
.
已知:
在四边形ABCD中,______,______;
求证:
四边形ABCD是平行四边形
8、平行四边形ABCD,以AC为边在其两侧各作一个正三角形ACP和正三角形ACQ.求证:
四边形BPDQ是平行四边形
课后习题:
1、如图,在▱ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:
①∠OBE=∠ADO;
②EG=EF;
③GF平分∠AGE;
④EF⊥GE,其中正确的是( )
A.①②③B.②③④C.①③④D.①②④
2、如图,在平行四边形ABCD中,BC=2AB,CE⊥AB,E为垂足,F为AD的中点,若∠AEF=54°
,求的度数。
3、给出下列命题:
(1)一组对边和一组对角分别相等的四边形是平行四边形;
(2)两组对角的内角平分线分别平行的四边形是平行四边形(3)一组对边中点间的距离等于另一组对边长和的一半的四边形是平行四边形(4)两条对角线都平分四边形的面积的四边形是平行四边形.其中,真命题有()
A1个B2个C3个D4个
4、如图,已知四边形ABCD中,AC与BD教育点O,AC=BD,,
AB+CD〉AC
5、在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.
若点P在BC边上(如图1),此时PD=0,可得结论:
PD+PE+PF=AB.请直接应用上述信息解决下列问题:
当点P分别在△ABC内(如图2),△ABC(如图3)时,上述结论是否成立?
若成立,请给予证明;
若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明
6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形 培养 竞赛 新方法 十年 典藏