反比例函数一次函数与几何结合大题典型中等难度偏上难题Word格式文档下载.doc
- 文档编号:14644234
- 上传时间:2022-10-23
- 格式:DOC
- 页数:19
- 大小:974.01KB
反比例函数一次函数与几何结合大题典型中等难度偏上难题Word格式文档下载.doc
《反比例函数一次函数与几何结合大题典型中等难度偏上难题Word格式文档下载.doc》由会员分享,可在线阅读,更多相关《反比例函数一次函数与几何结合大题典型中等难度偏上难题Word格式文档下载.doc(19页珍藏版)》请在冰豆网上搜索。
售价x(元/千克)
400
250
240
200
150
125
120
销售量y(千克)
30
40
48
60
80
96
100
观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.
(1) 写出这个反比例函数的解析式,并补全表格;
(2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
4.若A、B两点关于轴对称,且点A在双曲线上,点B在直线上,设点A的坐标为(a,b),求的值。
5.如图,已知,是一次函数的图象和
反比例函数的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线与轴的交点的坐标及△的面积;
(3)求方程的解(请直接写出答案);
(4)求不等式的解集(请直接写出答案).
6.如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交轴、轴于点C、D,且S△PBD=4,.
y
x
P
B
D
A
O
C
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当时,一次函数的值大于反比例函数的值的的取值范围.
7.已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=的图象上,且sin∠BAC=.
(1)求k的值和边AC的长;
(2)求点B的坐标.
8.如图,正比例函数的图象与反比例函数在第一象限的图象交于点,过点作轴的垂线,垂足为,已知的面积为1.
(1)求反比例函数的解析式;
(2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的横坐标为1,在轴上求一点,使最小.
(第20题)
9.如图,一次函数y=k1x+b的图象经过A(0,-2),B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M,若△OBM的面积为2。
(1)求一次函数和反比全例函数的表达式。
(2)在x轴上存在点P,使AM⊥PM?
若存在,求出点P的坐标,若不存在,说明理由。
10.如图,在直角坐标系中,O为坐标原点.已知反比例函数
y=(k>
0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为.
(1)求k和m的值;
(2)点C(x,y)在反比例函数y=的图象上,求当1≤x≤3时函数值y的取值范围;
(3)过原点O的直线l与反比例函数y=的图象交于P、Q两点,试根据图象直接写出线段PQ长度的最小值.
11.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.
(1)求该反比例函数和一次函数;
(2)求△AOC的面积.
12.如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、B.
(1)判断P是否在线段AB上,并说明理由;
(2)求△AOB的面积;
(3)Q是反比例函数y=(x>0)图象上异于点P的另一点,请以Q为圆心,QO
半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:
AN∥MB.
(第26题)
13.如图,已知一次函数y=kx+b的图象交反比例函数(x>
0)图象于点A、B,交x轴于点C.
(1)求m的取值范围;
(2)若点A的坐标是(2,-4),且,求m的值和一次函数的解析式;
14.如图,已知反比例函数的图象经过点(,8),直线经过该反比例函数图象上的点Q(4,).
(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与轴、轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连结0P、OQ,求△OPQ的面积.
15.如图,正比例函数与反比例函数相交于A、B点,已知点A的坐标为(4,n),BD⊥x轴于点D,且S△BDO=4。
过点A的一次函数与反比例函数的图像交于另一点C,与x轴交于点E(5,0)。
(1)求正比例函数、反比例函数和一次函数的解析式;
(2)结合图像,求出当时x的取值范围。
16.如图,直线l经过点A(1,0),且与双曲线y=(x>0)交于点B(2,1),过点P(p,p-1)(p>1)作x轴的平行线分别交曲线y=(x>0)和y=-(x<0)于M,N两点.
(1)求m的值及直线l的解析式;
(2)若点P在直线y=2上,求证:
△PMB∽△PNA;
(3)是否存在实数p,使得S△AMN=4S△APM?
若存在,请求出所有满足条件的p的值;
若不存在,请说明理由.
17.下图中曲线是反比例函数y=的图像的一支。
(1)这个反比例函数图象的另一支位于哪个象限?
常数n的取值范围是什么?
(2)若一次函数y=的图像与反比例函数图像交于点A,与x交于B,△AOB的面积为2,求n的值。
18.如图,已知A,B两点的坐标分别为A(0,),B(2,0)直线AB与反比例函数的图像交与点C和点D(-1,a).
(1)求直线AB和反比例函数的解析式;
(2)求∠ACO的度数;
(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少度时OC′⊥AB,并求此时线段AB′的长.
19.在平面直角坐标系xOy中,直线过点A(1,0)且与y轴平行,直线过点B(0,2)且与x轴平行,直线与相交于P.点E为直线一点,反比例函数(k>
0)的图象过点E且与直线相交于点F.
(1)若点E与点P重合,求k的值;
(2)连接OE、OF、EF.若k>
2,且△OEF的面积为△PEF的面积2倍,求点E的坐标;
[来源:
学科网]
(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?
若存在,求点E的坐标;
若不存在,请说明理由.
20.如图,已知反比例函数的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2).
⑴求直线y=ax+b的解析式;
⑵设直线y=ax+b与x轴交于点M,求AM的长.
第23题图
21.如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点8,与反比例函数y一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C作CE上y轴于E,过点D作DF上X轴于F.
(1)求m,n的值;
(2)求直线AB的函数解析式;
(3)求证:
△AEC∽△DFB.
22.如图14,已知,是一次函数的图象和
23.已知:
如图,正比例函数的图象与反比例函数的图象交于点
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?
(3)是反比例函数图象上的一动点,其中过点作直线轴,交轴于点;
过点作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段与的大小关系,并说明理由.
Oo
M
24.如图,,,……在函数的图像上,,,,……都是等腰直角三角形,斜边、、,……都在轴上
如图
⑴求的坐标
⑵求的值
25.如图,已知反比例函数的图象与一次函数的图象交于、两点,.
(1)求反比例函数和一次函数的关系式;
(2)在直线上是否存在一点,使∽,若存在,求点坐标;
若不存在,请说明理由.
26、若一次函数y=2x-1和反比例函数y=的图象都经过点(1,1).
(2)已知点A在第三象限,且同时在两个函数的图象上,求点A的坐标;
(3)利用
(2)的结果,若点B的坐标为(2,0),且以点A、O、B、P为顶点的四边形是平行四边形,请你直接写出点P的坐标.·
27.如图8,直线与反比例函数(<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4.
(1)试确定反比例函数的关系式;
(2)求△AOC的面积.
28.如图,已知正比例函数和反比例函数的图象都经过点.
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;
(3)第
(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:
?
若存在,求点E的坐标;
3
6
29.如图,曲线C是函数在第一象限内的图象,抛物线是函数的图象.点()在曲线C上,且都是整数.
(1)求出所有的点;
(2)在中任取两点作直线,求所有不同直线的条数;
(3)从
(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.
4
2
30.如图,正方形OABC的面积是4,点B在反比例函数的图象上.若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例 函数 一次 几何 结合 典型 中等 难度 难题