七年级下二元一次方程组-分配、配套、行程等问题Word文档下载推荐.doc
- 文档编号:14641641
- 上传时间:2022-10-23
- 格式:DOC
- 页数:5
- 大小:42KB
七年级下二元一次方程组-分配、配套、行程等问题Word文档下载推荐.doc
《七年级下二元一次方程组-分配、配套、行程等问题Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《七年级下二元一次方程组-分配、配套、行程等问题Word文档下载推荐.doc(5页珍藏版)》请在冰豆网上搜索。
8、(材料分配问题)一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?
9、(分配调运)一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如左表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次刚好运完这批货物,问这批货物有多少吨?
10、某校运动员分组训练,若每组7人,余3人;
若每组8人,则缺5人;
设运动员人数为x人,组数为y组,则列方程组为 __________________
11、一批书分给一组学生,每人6本则少6本,每人5本则多5本,该组共有_____名学生,这批书共有_______本.
12、(分配问题)初一级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,正好坐下。
求初一级学生人数及长凳数.
13、(分配调运)运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;
第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?
14、(分配问题)若干学生住宿,若每间住4人则余20人,若每间住8人,正好住满,问宿舍几间,学生多少人?
15、(分配问题)将若干练习本分给若干名同学,如果每人分4本,那么还余20本;
如果每人分8本,还余4本,求学生人数和练习本数。
16、(分配问题)小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:
“把你珠子的一半给我,我就有10颗珠子”.小刚却说:
“只要把你的给我,我就有10颗”,如果设小刚的弹珠数为颗,小龙的弹珠数为颗,问各有多少颗弹珠?
17、(分配问题)戴着红凉帽的若干女生与戴着白凉帽的若干男生同租一游船在公园划船,一女生说:
“我看到船上红、白两种帽子一样多.”一男生说:
“我看到的红帽子是白帽子的2倍”.请问:
该船上男、女生各几人?
18、某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;
而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各有几人?
19:
“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”那么有_______间房,有_____位客人.
20:
《希腊文集》中有一些用童话形式写成的数学题.比如驴和骡子驮货物这道题,就曾经被大数学家欧拉改编过,题目是这样的:
驴和骡子驮着货物并排走在路上,驴不住地埋怨自己驮的货物太重,压得受不了.骡子对驴说:
“你发什么牢骚啊!
我驮的货物比你重,假若你的货物给我一口袋,我驮上的货就比你驮的重一倍,而我若给你一口袋,咱俩驮的才一样多.”那么驴和骡子各驮几口袋货物?
你能用方程组来解这个问题吗?
二、比赛积分问题
1、小明与他的爸爸一起做投篮球游戏.两人商定规则为:
小明投中1个得3分,小明爸爸投中1个得1分.结果两人一共投中了20个,一计算,发现两人的得分恰好相等.你能告诉我,他们两人各投中几个吗?
2、(分配问题)某篮球队的一个主力队员在一次比赛中22投14中得28分,除了3个三分球外,他还投中的二分球及罚球分别多少个?
三、配套问题
1、用白铁皮做罐头盒。
每张铁皮可制盒身16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒。
现有150张白铁皮,用多少张制盒身,多少张制盒底,可以刚好配套?
1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?
3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
5、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
等量关系:
小齿轮数量的2倍=大齿轮数量的3倍
三、行程问题
(1)行程问题中的三个基本量及其关系:
路程=速度×
时间。
(2)基本类型有
①相遇问题;
②追及问题;
常见的还有:
相背而行;
行船问题;
环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
1.甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.
2、两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.
3、甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;
相向而行,1小时相遇。
二人的平均速度各是多少?
四、金融、利润问题
(1)销售问题中常出现的量有:
进价、售价、标价、利润等
(2)有关关系式:
商品利润=商品售价—商品进价=商品标价×
折扣率—商品进价
商品利润率=商品利润/商品进价商品售价=商品标价×
折扣率
1、随着奥运会成功召开,福娃系列商品也随之热销.一天小林在商场看到一件奥运吉祥物的纪念品,标价为每件33元,他的身边只带有2元和5元两种面值的人民币各若干张,他买了一件这种商品.若无需找零钱,则小林付款方式有哪几种(指付出2元和5元钱的张数)?
哪种付款方式付出的张数最少?
2、甲乙两件服装的成本共500元,商店老板为获取利润,决定将甲按50%的利润定价,乙按40%的利润定价。
在实际出售是,应顾客要求,两件服装均按9折出售,共获利157元,就甲乙的成本各是多少。
五、工程问题
工程问题中的三个量及其关系为:
工作总量=工作效率×
工作时间经常在题目中未给出工作总量时,设工作总量为单位1。
1、一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;
如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?
2、一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;
若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?
六、年龄问题
1.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.
2.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄
3、师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?
七、几何问题
1、有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.
八、浓度问题
1.有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水______________千克。
某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50%的硫酸多少千克?
2.今需将浓度为80%和15%的两种农药配制成浓度为20%的农药4千克,问两种农药应各取多少千克?
3.甲、乙两块合金,含银和铜的比分别是甲为4:
3,乙为7:
9,今从两块合金中各取多少千克,能得到含银84千克、含铜82千克的新合金?
4.有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少?
九、方案设计与成本分析:
1.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。
当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:
如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行。
受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了三种可行方案。
方案一:
将蔬菜全部进行粗加工;
方案二:
尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;
方案三:
将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天。
你认为哪种方案获利最多?
为什么
2.牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;
制成酸奶销售,每加工1吨鲜奶可获利润1200元;
制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:
若制酸奶,每天可加工3吨鲜奶;
若制奶片,每天可加工1吨鲜奶;
受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.
请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.
3.某市剧院举办大型文艺演出,其门票价格为:
一等席300元/人,二等席200元/人,三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。
4.小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;
乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 二元 一次 方程组 分配 配套 行程 问题