人教版七年级数学下册--《平行线》教学设计Word格式文档下载.doc
- 文档编号:14639952
- 上传时间:2022-10-23
- 格式:DOC
- 页数:6
- 大小:60.50KB
人教版七年级数学下册--《平行线》教学设计Word格式文档下载.doc
《人教版七年级数学下册--《平行线》教学设计Word格式文档下载.doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册--《平行线》教学设计Word格式文档下载.doc(6页珍藏版)》请在冰豆网上搜索。
重合直线
相交直线
平行直线
不在同一个平面内
异面直线
2.平行线的表示方法
平行用“∥”表示,如图7所示,直线AB与直线CD平行,记作AB∥CD,读作AB平行于CD。
3.平行线的画法
4.平行线的基本性质
(1)平行公理:
经过直线外一点,有且只有一条直线与已知直线平行。
(2)平行公理的推论:
如果两条直线都和第三条直线平行,那么这两条直线也平行。
5.平行线的判定方法:
(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
(4)两条直线都和第三条直线平行,那么这两条直线平行。
(5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行。
6.平行线的性质:
(1)两条平行线被第三条直线所截,同位角相等。
简记:
两直线平行,同位角相等。
(2)两条平行线被第三条直线所截,内错角相等。
两直线平行,内错角相等。
(3)两条平行线被第三条直线所截,同旁内角互补。
两直线平行,同旁内角互补。
范例1如图,已知∠AMF=∠BNG=75°
,∠CMA=55°
,求∠MPN的大小
答案:
50°
解析:
因为∠AMF=∠BNG=75°
,又因为∠BNG=∠MNP,所以∠AMF=∠MNP,所以EF∥GH,所以∠MPN=∠CME,又因为∠AMF=75°
,所以∠AMF+∠CMA=130°
,即∠CMF=130°
,所以∠CME=180°
-130°
=50°
,所以∠MPN=50°
范例2如图,∠1与∠3为余角,∠2与∠3的余角互补,∠4=115°
,CP平分∠ACM,求∠PCM
57.5°
因为∠1+∠3=90°
,∠2+(90°
-∠3)=180°
,所以∠2+∠1=180°
,所以AB∥DE,所以∠BCN=∠4=115°
,所以∠ACM=115°
,又因为CP平分∠ACM,所以∠PCM=∠ACM=×
115°
=57.5°
,所以∠PCM=57.5°
范例3如图,已知:
∠1+∠2=180°
,∠3=78°
,求∠4的大小
102°
因为∠2=∠CDB,又因为∠1+∠2=180°
,所以∠1+∠CDB=180°
,所以得到AB∥CD,所以∠3+∠4=180°
,又因为∠3=78°
,所以∠4=102°
范例4如图,已知:
∠BAP与∠APD互补,∠1=∠2,说明:
∠E=∠F
因为∠BAP与∠APD互补,所以AB∥CD,所以∠BAP=∠CPA,又因为∠1=∠2,所以∠BAP-∠1=∠CPA-∠2,即∠EAP=∠FPA,所以EA∥PF,所以∠E=∠F
范例5如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:
∠HOP、∠AGF、∠HPO有怎样的关系?
用式子表示并证明
∠HOP=∠AGF-∠HPO
过O作CD的平行线MN,因为AB∥CD,且CD∥MN,所以AB∥MN,所以∠AGF=∠MOF=∠HON,因为CD∥MN,∠HPO=∠PON,所以∠HOP=∠HON-∠PON=∠HON-∠HPO,所以∠HOP=∠AGF-∠HPO
范例6如图,已知AB∥CD,说明:
∠B+∠BED+∠D=360°
分析:
因为已知AB∥CD,所以在∠BED的内部过点E作AB的平行线,将∠B+∠BED+∠D的和转化成对平行线的同旁内角来求。
解:
过点E作EF∥AB,则
∠B+∠BEF=180°
(两直线平行,同旁内角互补)
∵AB∥CD(已知)
EF∥AB(作图)
∴EF∥CD(平行于同一条直线的两直线平行)
∴∠D+∠DEF=180°
∴∠B+∠BEF+∠D+∠DEF=360°
∵∠B+∠BED+∠D=∠B+∠BEF+∠D+∠DEF
∴∠B+∠BED+∠D=360°
范例7.小张从家(图中A处)出发,向南偏东40°
方向走到学校(图中B处),再从学校出发,向北偏西75°
的方向走到小明家(图中C处),试问∠ABC为多少度?
说明你的理由。
解:
∵AE∥BD(已知)
∴∠BAE=∠DBA(两直线平行,内错角相等)
∵∠BAE=40°
(已知)
∴∠ABD=40°
(等量代换)
∵∠CBD=∠ABC+∠ABD(已知)
∴∠ABC=∠CBD-∠ABD(等式性质)
∵∠ABD=40°
∴∠ABC=75°
-40°
=35°
范例8如图,∠ADC=∠ABC,∠1+∠2=180°
,AD为∠FDB的平分线,说明:
BC为∠DBE的平分线。
分析:
从图形上看,AE应与CF平行,AD应与BC平行,不妨假设它们都平行,这时欲证BC为∠DBE的平分线,只须证∠3=∠4,而∠3=∠C=∠6,∠4=∠5,由AD为∠FDB的平分线知∠5=∠6,这样问题就转化为证AE∥CF,且AD∥BC了,由已知条件∠1+∠2=180°
不难证明AE∥CF,利用它的平行及∠ADC=∠ABC的条件,不难推证AD∥BC。
证明:
∵∠1+∠2=180°
∠2+∠7=180°
(补角定义)
∴∠1=∠7(同角的补角相等)
∴AE∥CF
(同位角相等,两直线平行)
∴∠ABC+∠C=180°
又∠ADC=∠ABC(已知),CF∥AB(已证)
∴∠ADC+∠C=180°
∴AD∥BC(同旁内角互补,两直线平行)
∴∠6=∠C,∠4=∠5(两直线平行,同位角相等,内错角相等)
又∠3=∠C(两直线平行,内错角相等)
∴∠3=∠6(等量代换)
又AD为∠BDF的平分线
∴∠5=∠6
∴∠3=∠4(等量代换)
∴BC为∠DBE的平分线
范例9如图,DE,BE分别为∠BDC,∠DBA的平分线,∠DEB=∠1+∠2
(1)说明:
AB∥CD
(2)说明:
∠DEB=90°
(1)欲证平行,就找角相等与互补,但就本题,直接证∠CDB与∠ABD互补比较困难,而∠1+∠2=∠DEB,若以E为顶点,DE为一边,在∠DEB内部作∠DEF=∠2,再由DE,EB分别为∠CDB,∠DBA的平分线,就不难证明AB∥CD了,
(2)由
(1)证得AB∥CD后,由同旁内角互补,易证∠1+∠2=90°
,进而证得∠DEB=90°
(1)以E为顶点,ED为一边用量角器和直尺在∠DEB的内部作∠DEF=∠2
∵DE为∠BDC的平分线(已知)
∴∠2=∠EDC(角平分线定义)
∴∠FED=∠EDC(等量代换)
∴EF∥DC(内错角相等,两直线平行)
∵∠DEB=∠1+∠2(已知)
∵∠FEB=∠1(等量代换),∠EBA=∠EBF=∠1(角平分线定义)
∴∠FEB=∠EBA(等量代换)
∴FE∥BA(内错角相等,两直线平行)
又EF∥DC
∴BA∥DC(平行的传递性)
(2)∵AB∥DC(已证)
∴∠BDC+∠DBA=180°
又∠1=∠DBA,∠2=∠BDC(角平分线定义)
∴∠1+∠2=90°
又∠1+∠2=∠DEB
∴∠DEB=90°
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行线 人教版 七年 级数 下册 教学 设计
