二次函数复习专题讲义Word文件下载.doc
- 文档编号:14639462
- 上传时间:2022-10-23
- 格式:DOC
- 页数:23
- 大小:874.12KB
二次函数复习专题讲义Word文件下载.doc
《二次函数复习专题讲义Word文件下载.doc》由会员分享,可在线阅读,更多相关《二次函数复习专题讲义Word文件下载.doc(23页珍藏版)》请在冰豆网上搜索。
②:
决定抛物线与轴交点的位置。
当时,抛物线与轴交点在轴正半轴(即轴上方);
当时,抛物线与轴交点在轴负半轴(即轴下方);
当时,抛物线过原点。
③:
共同决定抛物线对称轴的位置。
当时,对称轴在轴右边;
当时,对称轴在轴左边;
当(即当时)对称轴为轴。
④特别:
当时,有;
当,有。
反之也成立。
4、二次函数的图像可由抛物线向上(向下),向左(向右)平移而得到。
具体为:
当时,抛物线向右平移个单位;
当时,抛物线向左平移个单位,得到;
当时,抛物线再向上平移个单位,当时,抛物线再向下平移个单位,而得到的图像。
5、抛物线与一元二次方程的关系:
①若抛物线与轴有两个交点,则一元二次方程有两个不相等的实根。
②若抛物线与轴有一个交点,则一元二次方程有两个相等的实根(即一根)。
③若抛物线与轴无交点,则一元二次方程没有实根。
6、二次函数的图像与性质
关系式
图像形状
抛物线
顶点坐标
对称轴
增
减
性
在图像对称轴左侧,即或,随的增大而减小;
在图像对称轴右侧,即或,随的增大而增大;
在图像对称轴左侧,即或,随的增大而增大;
在图像对称轴右侧,即或,随的增大而减小;
最大值最小值
当时,
【考点解析】
考点一:
二次函数的概念
【例1】下列函数中是二次函数的是()
【解析】根据二次函数的定义即可做出判断,中符合的形式,所以是二次函数,分别是一次函数和反比例函数,中右边不是整式,显然不是二次函数。
【答案】
【例2】已知函数是二次函数,则。
【解析】根据二次函数的定义,只需满足两个条件即可“二次项系数不为零,且的最高次数为”。
故有,解得,综上所述,取1。
【答案】1
【针对训练】
1、若函数是二次函数,则该函数的表达式为。
考点二:
待定系数法在求解二次函数解析式中的应用
【例1】已知点在二次函数的图象上,则的值是()
【解析】因为点在二次函数的图象上,所以将点代入二次函数中,可以得出,则可得,
【例2】
(2011,泰安)若二次函数的与的部分对应值如下表,则当时,的值为( )
【解析】设二次函数的解析式为,因为当或时,,由抛物线的对称性可知,,所以,把代入得,,所以二次函数的解析式为,当时,。
【答案】
1、(2002年太原)过,,三点的抛物线的顶点坐标是( )
2、无论为何实数,二次函数的图象总是过定点()
【例3】
(2010,石家庄一模)如图所示,在平面直角坐标系中,二次函数的图象顶点为,且过点,则与的函数关系式为( )
【解析】设这个二次函数的关系式为,将代入得,解得:
,故这个二次函数的关系式是,
1、二次函数的顶点为,则二次函数的解析式为________.
【例4】二次函数过点,则二次函数的解析式为______。
考点三:
二次函数的图像与性质的综合应用(与系数的关系)
【例1】
(2012,兰州)已知二次函数有最小值1,则、的大小关系为()
不能确定
【考点】涉及二次函数顶点坐标和最值
【解析】因为二次函数有最小值1,所以,,,所以。
【针对训练】
1、二次函数的最小值是。
2、(2013,兰州)二次函数的图象的顶点坐标是()
3、抛物线的顶点坐标是()
(2012,兰州)抛物线可以由抛物线平移得到,则下列平移过程正确的是()
先向左平移2个单位,再向上平移3个单位
先向左平移2个单位,再向下平移3个单位
先向右平移2个单位,再向下平移3个单位
先向右平移2个单位,再向上平移3个单位
【考点】涉及函数平移问题
【解析】抛物线向左平移2个单位可得到抛物线,再向下平移3个单位可得到抛物线。
1、(2012,南京)已知下列函数:
(1);
(2);
(3)。
其中,图象通过平移可以得到函数的图象的有(填写所有正确选项的序号)。
2、(2009,上海)将抛物线向上平移一个单位后,得到新的抛物线,那么新的抛物线的表达式是。
3、将抛物线向左平移2个单位后,得到的抛物线的解析式是()
4、将抛物线向下平移3个单位,在向左平移4个单位得到抛物线,则原抛物线的顶点坐标是__________。
(2013,长沙)二次函数的图象如图所示,则下列关系式错误的是()
【考点】图像与系数的关系
【解析】观察题中图象可知,抛物线的开口方向向上,抛物线与轴的交点在轴的正半轴上,与轴有两个交点,所以,,,且当时,。
显然选项A、B、C都正确,只有选项D错误。
【例4】
(2011,山西)已知二次函数的图象如图所示,对称轴为直线,则下列结论正确的是()
方程的两根是,
当时,随的增大而减小
【考点】图像与性质的综合应用
【解析】由图象可知,,故A错误;
因对称轴为直线,所以,故C错误;
由图象可知当时,随的增大而增大,故D错误;
由二次函数的对称性可知B选项正确,
1、(2013,呼和浩特)在同一平面直角坐标系中,函数和函数(是常数,且)的图象可能是()
2、(2011,重庆)已知抛物线在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()
3、在反比例函数中,当时,随的增大而减小,则二次函数的图象大致是()
4、如图所示,二次函数的图像经过,且与轴的交点的横坐标分别为,其中,下列结论:
①;
②;
③;
④,其中正确的选项有______________。
【例5】已知关于的函数,求当时函数的最大值和最小值
1、已知函数,试求当的最大值和最小值
2、已知函数,试求当的最大值和最小值
【例6】已知二次函数其中满足和,则该二次函数的对称轴是直线____________。
1、已知是二次函数的图像上的两点,则当时,二次函数的值是__________.
【例7】已知二次函数,当时,的值随值的增大而增大,则实数的取值范围是____________。
1、若二次函数,当时,随的增大而减小,则的取值范围是_________。
讲到这儿了
考点四:
二次函数的实际应用
(2011,重庆)某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格(元)与月份(,且取整数)之间的函数关系如下表:
月份
1
2
3
4
5
6
7
8
9
价格(元/件)
560
580
600
620
640
660
680
700
720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格(元)与月份(10≤≤12,且取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出与之间的函数关系式,根据如图所示的变化趋势,直接写出与之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量(万件)与月份满足函数关系式(1≤≤9,且取整数)10至12月的销售量(万件)与月份满足函数关系式(10≤≤12,且取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高,与此同时每月销售量均在去年12月的基础上减少.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出的整数值.
(参考数据:
992=9901,982=9604,972=9409,962=9216,952=9025)
【考点】涉及函数模型,把实际问题转化为函数,用函数的观点来解决问题,综合性比较强,一般还涉及不等式,最值问题。
【解析】
(1)把表格
(1)中任意2点的坐标代入直线解析式可得的解析式.把(10,730)(12,750)代入直线解析式可得的解析式,;
(2)分情况探讨得:
1≤≤9时,利润=×
(售价﹣各种成本);
10≤≤12时,利润=×
并求得相应的最大利润即可;
(3)根据1至5月的总利润1700万元得到关系式求值即可。
解:
(1)设,则,解得,
∴(1≤≤9,且取整数);
设,则,解得,∴(10≤≤12,且取整数);
(2)设去年第月的利润为元.1≤≤9,且取整数时∴=4时,最大=450元;
10≤≤12,且取整数时,
∴=10时,最大=361元;
(3)去年12月的销售量为﹣0.1×
12+2.9=1.7(万件),
今年原材料价格为:
750+60=810(元)
今年人力成本为:
50×
(1+20%)=60元.
∴5×
[1000×
(1+)﹣810﹣60﹣30]×
1.7(1﹣0.1×
)=1700,
设,整理得,
解得
∵9401更接近于9409,
∴,
∴≈0.1,≈9.8,
∴≈10或≈980,
∵1.7(1﹣0.1×
)≥1,
∴≈10.
(1)(10≤≤12,且取整数);
(2)=10时,最大=361元;
(3)≈10
1、(2013湖北孝感)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲。
经试验发现,若每件按24元的价格销售时,每天能卖出36件;
若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 复习 专题 讲义