人教A版高中数学必修五同步检测第3章章末复习课Word格式.docx
- 文档编号:14603688
- 上传时间:2022-10-23
- 格式:DOCX
- 页数:11
- 大小:135.41KB
人教A版高中数学必修五同步检测第3章章末复习课Word格式.docx
《人教A版高中数学必修五同步检测第3章章末复习课Word格式.docx》由会员分享,可在线阅读,更多相关《人教A版高中数学必修五同步检测第3章章末复习课Word格式.docx(11页珍藏版)》请在冰豆网上搜索。
0(或v0),无论B为正值还是负值,我们都可以把y项的系数变形为正数,当B>
0时,①Ax+By+C>
0表示直线Ax+By+C=0上方的区域;
②Ax+By+Cv0表示直线Ax+By+C=0下方的区域.
4.求目标函数最优解的两种方法
(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;
(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.
5.运用基本不等式求最值,把握三个条件(易错点)
(1)“一正”一一各项为正数;
(2)“二定”一一“和”或“积”为定值;
(3)“三相等”一一等号一定能取到.
总结归纳专题突破
专题一不等关系与不等式的基本性质
1.同向不等式可以相加,异向不等式可以相减;
但异向不等式
不可以相加,同向不等式不可以相减.
(1)若a>
b,c>
d,贝卩a+c>
b+d;
(2)若a>
b,cvd,贝卩a—c>
b—a.
2.左右同正不等式:
同向的不等式可以相乘,但不能相除;
异向不等式可以相除,但不能相乘.
b>
0,c>
d>
0,贝卩ac>
bd;
ab
0,0vcvd,则?
>
&
3.左右同正不等式,两边可以同时乘方或开方:
若a>
b>
0,
则an>
bn或na>
nb.
1111
4.若ab>
0,a>
b,贝卩一<
;
若abv0,a>
b,贝卩一>
.
abab
a2b2
[例1]已知a>
0,b>
0,且a^b,比较石+石与a+b的大小.
解:
因为命+1
a2—b2b2—a22
〒+h”
2z-a2一b2
I—(a+b)=b—b+a—a=
b2)f-a)=
22a—b(a—b)2(a+b)
(a2—叽厂ab,
因为a>
0,且a^b,
所以(a—b)2>
0,a+b>
0,ab>
0,
fa2b2)a2b2
所以匚+匚—(a+b)>
0,即—+—>
a+b.iba丿ba
•归纳升华
不等式比较大小的常用方法
(1)作差比较法:
作差后通过分解因式、配方等手段判断差的符号得出结果.
(2)作商比较法:
常用于分数指数幕的代数式.
(3)乘方转化的方法:
常用于根式比较大小.
(4)分子分母有理化.
(5)利用中间量.
[变式训练]
(1)已知0vXV2,求函数y=x(8—3x)的最大值;
2
(2)设函数f(x)=x+,x€[0,+x),求函数f(x)的最小值.
入II
解:
(1)因为0Vxv2,所以0V3xv6,8—3x>
1
所以y=x(8—3x)=3x3x•(8—3x)<
13x+8—3x16
32丿=T,
4
当且仅当3x=8—3x,即x=3时,取等号,
所以当x=3时,y=x(8—3x)有最大值为罟・
22
(2)f(x)=x+x+1=(x+1)+x+1—1,因为x€[0,+乂),所以x
所以x+1+>
22.
x+1
二判判断对应方程的根.
三求——求对应方程的根.
四画——画出对应函数的图象.
五解集一一根据图象写出不等式的解集.
[例2]
(1)解不等式:
—1vx2+2x-1<
2;
a(x—1)
(2)解不等式x2>
1(a^1).
X—2
X+2x—1>
—1,
⑴原不等式等价于x2+2x—K2,
x2+2x>
0,①
即2-
lx2+2x—3<
0.②
£
由①得x(x+2)>
0,所以XV—2或x>
0;
由②得(x+3)(x—1)<
所以一3<
x<
1.
将①②的解集在数轴上表示出来,如图所示.
It——1——IU4'
Br
-3-2-1Q11
求其交集得原不等式的解集为{x—3<
xv—2或0Vx<
1}.
(2)原不等式可化为*(x—1)—1>
①当a>
1时,
(*)式即为x—
*—Tj(x—2)>
0,而年
a—1a—1
—a
a—1
v0,所以
a—2a—1.
x—2
a—2
a—1V2此时x>
2或xV
而2-
a—2_aa—1a—1
②当av1时,(*)式即为x-N(x-2)v0,
a一2a一2
若0vav1,则>
2,此时2vXV;
a—1a—1
若a=0,则(x—2)2v0,此时无解;
a一2a一2
若av0,则v2,此时vxv2.
a—1a—1
综上所述,
a—2]
当a>
1时,不等式的解集为xxv—-或x>
2》;
a—1J
a—2
当0vav1时,不等式的解集为」x2vxva—卜;
当a=0时,不等式的解集为?
;
当av0时,不等式的解集为仪百vxv2.
含参数的一元二次不等式的分类讨论
(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.
(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分△>
0,A=0,Av0三种情况并加以讨论.
(3)若含参数的一元二次不等式可以转化成用其根捲,X2表示的形如a(x—xj(x—X2)的形式时,往往需要对其根分疋>
X2、洛=X2,X1vX2三种情况进行讨论,或用根与系数的关系帮助求解.
[变式训练]定义在(—1,1)上的奇函数f(x)在整个定义域上是
减函数,且f(1—a)+f(1—a2)v0,求实数a的取值范围.解:
因为f(x)的定义域为(—1,1),
—1v1-
av1,
所以一1v1-
-a2v1,
0vav2,
所以口
[—寸2vav慣且a^0,
所以0vav2,①
原不等式变形为f(1—a)v—f(1—a2).
由于f(x)为奇函数,有—f(1—a2)=f(a2—1),所以f(1—a)vf(a2—1).
又f(x)在(一1,1)上是减函数,
所以1—a>
a2—1,解得一2vav1•②
由①②可得0vav1,
所以a的取值范围是(0,1).专题三简单的线性规划问题
线性规划问题在实际中的类型主要有:
(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;
(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的
人力、物力资源最少・
[例3]某厂用甲、乙两种原料生产A,B两种产品,制造1tA,
1tB产品需要的各种原料数、可得到利润以及工厂现有各种原料数
如下表:
原料
每种产品所需原料/t
现有原料数/t
A
B
甲
14
乙
3
18
利润/(万元/t)
5
(1)在现有原料条件下,生产A,B两种产品各多少时,才能使利
润最大?
(2)每吨B产品的利润在什么范围变化时,原最优解不变?
当超出这个范围时,最优解有何变化?
⑴生产A,B两种产品分别为xt,yt,则利润z=5x+3y,r2x+yW14.
x+3y<
18,
x,y满足作出可行域如图所示:
x>
y>
当直线5x+3y=z过点B24,22J^t,z取最大值37£
即生产A
2422
产品24t,B产品22t时,可得最大利润.
(2)设每吨B产品利润为m万元,则目标函数是z=5x+my,直线斜率k=-m,
i
又kAB=-2,kCB=-3,要使最优解仍为B点,
515
则—2W-m<
-3,解得2<
mW15.
解答线性规划应用题的步骤
(1)列:
设出未知数,列出约束条件,确定目标函数.
(2)画:
画出线性约束条件所表示的可行域.
(3)移:
在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.
(4)求:
通过解方程组求出最优解.
⑸答:
作出答案.
A.3B.4C・9
D.
11
J
[变式训练]已知x>
0,y>
0,x+2y+2xy=8,贝Sx+2y的最小值是()
解析:
法一:
依题意得,x+1>
1,2y+1>
1,易知(x+1)(2y+1)=9,则(x+1)+(2y+1)>
2(x+1)(2y+1)=29=6,当且仅当x+1=2y+1=3,即x=2,y=1时,等号成立,因此有x+2y>
4,所以x+2y的最小值为4.
法二:
由题意得,
8—2y—(2y+1)+99
x===一1+
x2y+12y+12y+r
-99
所以x+2y=-1+2y+1+2y=-1+2y+1+2y+1-1,‘
所以m(x2—x+1)—6<
对于m€[1,3],f(x)<
0恒成立
1X(x2—x+1)—6<
1—21
<
x<
1+21
即为1—51+5
2<
2,
3X(x2—x+1)—6<
计算得出:
1_25<
1+25
所以实数x的取值范围:
1—J5<
不等式恒成立求参数范围问题常见解法
(1)变更主元法:
根据实际情况的需要确定合适的主元,一般将知道取值范围的变量看作主元.
(2)分离参数法:
若f(a)vg(x)恒成立,则f(a)<
g(x)min;
若f(a)>
g(x)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 必修 同步 检测 章章末 复习