中考不等式专题复习含详细解答Word文档格式.doc
- 文档编号:14552585
- 上传时间:2022-10-23
- 格式:DOC
- 页数:22
- 大小:458.50KB
中考不等式专题复习含详细解答Word文档格式.doc
《中考不等式专题复习含详细解答Word文档格式.doc》由会员分享,可在线阅读,更多相关《中考不等式专题复习含详细解答Word文档格式.doc(22页珍藏版)》请在冰豆网上搜索。
A.x≤2B.x<4C.2≤x<4D.x≥2
5.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是( )
A.﹣3 B.﹣2 C.﹣ D.
6.如果关于x的分式方程﹣3=有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是( )
A.﹣3 B.0 C.3 D.9
7.不等式组的解集表示在数轴上,正确的是( )
A.B.C.D.
8.将不等式3x﹣2<1的解集表示在数轴上,正确的是( )
A.B.C.D.
9.不等式>﹣1的正整数解的个数是( )
A.1个 B.2个 C.3个 D.4个
10.关于x的分式方程=3的解是正数,则字母m的取值范围是( )
A.m>3B.m>﹣3C.m>﹣3D.m<﹣3
11.不等式﹣≤1的解集是( )
A.x≤4B.x≥4C.x≤﹣1D.x≥﹣1
12.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )
A.103块B.104块C.105块D.106块
13.运行程序如图所示,规定:
从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )
A.x≥11B.11≤x<23C.11<x≤23D.x≤23
二、填空题
1.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.
2.关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是 .
3.已知四个有理数a,b,x,y同时满足以下关系式:
b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是 .
4.不等式>+2的解是 .
5.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为_________.
6.不等式组的解集为 .
7.任取不等式组的一个整数解,则能使关于x的方程:
2x+k=-1的解为非负数的概率为______.
8.不等式组有3个整数解,则m的取值范围是 .
9、不等式﹣x+3<0的解集是 .
三、解答题
1.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.
(1)A、B两种商品的单价分别是多少元?
(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?
2.某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.
(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.
(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?
(3)请你求出学校在第二次购买活动中最多需要多少资金?
3.解不等式组.
4.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.
(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;
(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?
将这些方案设计出来;
(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?
5.解不等式组:
.
6.解不等式组:
,并把解集在数轴上表示出来.
7.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.
(1)求小明步行速度(单位:
米/分)是多少;
(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?
8.解不等式组,并把解集在数轴上表示出来.
9.已知
(1)化简A;
(2)若x满足不等式组,且x为整数时,求A的值.
10.计算:
(1)6÷
(﹣3)+﹣8×
2﹣2;
(2)解不等式组:
11.先化简,再求值:
(﹣1)÷
,其中x的值从不等式组的整数解中选取.
12.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.
(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?
(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.
14.解不等式组:
15.东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.
(1)求购买一个甲种足球、一个乙种足球各需多少元;
(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?
16.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.
(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?
(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?
A.此不等式组无解B.此不等式组有7个整数解
C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤2
【考点】一元一次不等式组的整数解;
解一元一次不等式组.
【分析】分别解两个不等式得到x≤4和x>﹣2.5,利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.
【解答】解:
,
解①得x≤4,解②得x>﹣2.5,
所以不等式组的解集为﹣2.5<x≤4,
所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4.故选B.
【点评】本题考查了一元一次不等式组的整数解:
利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
【知识点】一元一次不等式组——不等式(组)的解集的表示方法【答案】C.
【解析】由x-3>0,得x>3;
由x+1≥0,得x≥―1;
故选择C.
【点拨】此题主要考查了在数轴上表示不等式的解集的方法,解答此题的关键是要注意“两定”:
一是定界点,若边界点含于解集为实心点,不含于解集即为空心点;
二是定方向,定方向的原则是:
“小于向左,大于向右”.
【考点】一次函数与一元一次不等式.
【分析】首先把点A(2,1)代入y=kx+3中,可得k的值,再解不等式kx+3≥0即可.
∵y=kx+3经过点A(2,1),∴1=2k+3,
解得:
k=﹣1,
∴一次函数解析式为:
y=﹣x+3,﹣x+3≥0,解得:
x≤3.故选A.
【考点】解一元一次不等式组.
【分析】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 不等式 专题 复习 详细 解答