小波变换详解_精品文档Word格式.doc
- 文档编号:14436792
- 上传时间:2022-10-22
- 格式:DOC
- 页数:11
- 大小:377KB
小波变换详解_精品文档Word格式.doc
《小波变换详解_精品文档Word格式.doc》由会员分享,可在线阅读,更多相关《小波变换详解_精品文档Word格式.doc(11页珍藏版)》请在冰豆网上搜索。
尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。
但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。
因此需要一种如下的数学工具:
可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。
1964年,Gabor等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor变换”。
定义“窗函数”在有限的区间外恒等于零或很快地趋于零,用函数乘以,其效果等同于在附近打开一个窗口,即:
(4-3)
式(4-3)即为函数f(t)关于g(t)的Gabor变换。
由定义可知,信号的Gabor变换可以反映该信号在附近的频谱特性。
其逆变换公式为:
(4-4)
可见的确包含了信号的全部信息,且Gabor窗口位置可以随着的变化而平移,符合信号时频局部化分析的要求。
虽然Gabor变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不足,且兼顾信号的时频分辨率,但其本身仍存在不可克服的局限性,即Gabor窗口不具有自适应性,其大小是固定不变的,因此Gabor变换只能进行单一分辨率的分析。
而在实际研究中,我们常常希望窗口的大小会随着频率的高低而改变,比如在研究高频信号时,希望窗口开得小一点;
反之,在研究低频信号时,则希望窗口开得大一点,这样才更符合实际研究中低频信号分辨率比高频信号分辨率低的特点,因此需要研究更好的解决办法来改善Gabor变换的不足。
为了克服前面所描述的傅立叶变换和Gabor变换存在的不足,学者们提出了小波变换(WaveletTransform)。
4.2小波变换与逆变换
4.2.1连续小波变换和离散小波变换
小波变换是一种窗El面积(即窗口大小)固定但窗口形状可变的时频局部化分析方法,其高频部分的时间分辨率较高而频率分辨率较低,而低频部分的频率分辨率较高而时间分辨率较低,因此对信号具有良好的自适应性,被冠以“数学显微镜”的美誉。
小波变换又可分为连续小波变换和离散小波变换两种。
连续小波变换的概念是由Morlet等人提出[[[]}EEEE
]。
设为小波变换的核函数,若核函数若满足容许性条件:
(4-5)
则称该函数为基小波。
一维信号f(t)的连续小波变换可定义为:
(4-6)
根据上述对基小波定义,可知:
,且在无穷远处趋近于零。
一般的,记:
a<
0(4-7)
函数是由基小波函数经过尺度a的伸缩和b的平移之后所得。
常用的连续小波包括:
Morlet小波、Daubechies小波、三次样条小波、Meyer小波和Simoncelli小波等。
与连续小波变换相对应的是离散小波变换,其一般形式为:
(4-8)
其中为小波基,、为两个常量且>
0。
离散小波最具代表性的为二进小波,即为2的幂次,取整。
由于小波变换在时域和频域同时兼有局部化能力,且能逐步聚焦到对象的任何细节进行分析,因此在人脸识别方面得到众多研究者的关注。
4.2.2几种常见的小波
同傅立叶分析不同,小波分析的基(小波函数)不是唯一存在的,所有满足小波条件的函数都可以作为小波函数,那么小波函数的选取就成了十分重要的问题[8]。
(1)Haar小波
A.Haar于1990年提出一种正交函数系,定义如下:
(4-9)
这是一种最简单的正交小波,即
(4-10)
(2)Daubechies(dbN)小波系
该小波是Daubechies从两尺度方程系数出发设计出来的离散正交小波。
一般简写为dbN,N是小波的阶数。
小波和尺度函数阈中的支撑区为2N-1。
的消失矩为N。
除N=1外(Haar小波),dbN不具对称性〔即非线性相位〕;
dbN没有显式表达式(除N=1外)。
但的传递函数的模的平方有显式表达式。
假设,其中,为二项式的系数,则有
(4-11)其中
(3)Biorthogonal(biorNr.Nd)小波系
Biorthogonal函数系的主要特征体现在具有线性相位性,它主要应用在信号与图像的重构中。
通常的用法是采用一个函数进行分解,用另外一个小波函数进行重构。
Biorthogonal函数系通常表示为biorNr.Nd的形式:
Nr=1Nd=1,3,5
Nr=2Nd=2,4,6,8
Nr=3Nd=1,3,5,7,9
Nr=4Nd=4
Nr=5Nd=5
Nr=6Nd=8
其中,r表示重构,d表示分解。
(4)Coiflet(coifN)小波系
coiflet也是函数由Daubechies构造的一个小波函数,它具有coifN(N=1,2,3,4,5)这一系列,coiflet具有比dbN更好的对称性。
从支撑长度的角度看,coifN具有和db3N及sym3N相同的支撑长度;
从消失矩的数目来看,coifN具有和db2N及sym2N相同的消失矩数目。
(5)SymletsA(symN)小波系
Symlets函数系是由Daubechies提出的近似对称的小波函数,它是对db函数的一种改进。
Symlets函数系通常表示为symN(N=2,3,…,8)的形式。
(6)Morlet(morl)小波
Morlet函数定义为,它的尺度函数不存在,且不具有正交性。
(7)MexicanHat(mexh)小波
MexicanHat函数为
(4-12)
它是Gauss函数的二阶导数,因为它像墨西哥帽的截面,所以有时称这个函数为墨西哥帽函数。
墨西哥帽函数在时间域与频率域都有很好的局部化,并且满足
(4-13)
由于它的尺度函数不存在,所以不具有正交性。
(8)Meyer函数
Meyer小波函数和尺度函数都是在频率域中进行定义的,是具有紧支撑的正交小波。
(4-14)
其中,为构造Meyer小波的辅助函数,且有
(4-15)
4.2.3二维小波变换与逆变换
把对一维的表示推广到二维,考虑二维尺度函数是可分离的情况,可有3个二维小波,则二维尺度函数和小波函数可表示为:
(4-16)
(4-17)
设表示一幅离散图像,用低通滤波器和高通滤波器分别对的每一行作滤波,并作隔点抽样,然后再用它们分别对的每一列滤波并作隔点抽样,得到图像低频概貌和图像高频细节,,,则有如下小波正变换(分解算法):
(4-18)
其小波逆变换(重构算法)如下式:
(4-19)
对于N×
N像素的图像,小波变换能分解J层,整数。
在每一尺度下包含前一阶段的低频信息,而、和分别包含前一阶段横向、纵向和对角方向的边缘细信息。
图4.1二维小波正变换框图
图4.2二维小波变换逆变换框图
表示抽样,为2点取1点的抽样,即只剩下一半样数的分解过程,表示插样,即得到的样数为原先样数的两倍。
4.3人脸图像的小波变换
小波在图像处理上的应用思路主要采用将空间或时间域上的图像信号变换到小波域上,成为多层次的小波系数,根据小波的特性,分析小波系数的特点,针对不同需求,结合常规的图像处理方法提出更符合小波分析的新算法来处理小波系数,再对处理后的小波系数进行反变换,将得到所需的目标图像。
小波反变换
图像处理
小波正变换
图像输入
图像输出
图4.3小波变换处理图像流程图
小波变换的优点在于具有良好的时间和频率特性,应用范围较广。
采用小波分解图像,可降低分解后图像子带的分辨率,大大减少相应的计算复杂度,并可提供更多的空间和频率局部信息。
由于一幅图像的信息主要包含在低频部分,而图像细节体现在高频部分,故可通过小波变换得到低频系数,也就是图像的主要信息。
在本算法中,采用二维离散小波变换,进行二维小波频域分解,实际是进行两次一维小波变换。
经过一级小波变换之后,一幅图像被分解成为如图4.4(a)所示的4个子带。
包括低频区域LL,高频区域LH、HL、HH,每个区域都是一幅图像。
LL区域表示的是原图像的平滑图像,它包含了原图像的大部分信息,刻画人脸表情和姿态的不变特征;
LH区域保持了原图像的垂直边缘细节,体现人脸的轮廓和鼻子的垂直特征;
HL区域保持了原图像的水平边缘细节,体现了人脸的眼睛、嘴巴的水平特征;
HH区域保持了原图像的对角线细节,受噪声、表情和姿势的影响较大。
经过一级小波分解后,每个区域的图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 变换 详解 精品 文档