放射源安全防护培训教材Word文档格式.doc
- 文档编号:14204972
- 上传时间:2022-10-20
- 格式:DOC
- 页数:13
- 大小:89KB
放射源安全防护培训教材Word文档格式.doc
《放射源安全防护培训教材Word文档格式.doc》由会员分享,可在线阅读,更多相关《放射源安全防护培训教材Word文档格式.doc(13页珍藏版)》请在冰豆网上搜索。
就是宏观的水。
原子虽然很小,它仍有着复杂的结构。
原子由原子核和一定数量的电子组成。
原子核在中心,带正电。
电子绕着原子核在特定的轨道上运动,带负电。
整个原子的正负电荷相等,是中性的。
原子核内部的情况又是怎样的呢?
简单地讲,原子核是由一定数量的质子和中子组成。
中子数比质子数稍多一些。
两者数目具有一定的比例。
一个原子所包含的质子数目与中子数目之和,称为该原子的质量数。
它也就是原子核的质量数。
简单归纳一下:
质子(带正电,数目与电子相等)
原子核
原子中子(不带电,数目=质量数-原子序数)
电子(质量小,带负电,数目与质子相等,称为原子序数)
原子的化学性质仅仅取决于核外电子数目,也就是仅仅取决于它的原子序数。
我们把原子序数相同的原子称作元素。
有些原子,尽管它们的原子序数相同,可是中子数目不相同,这些原子的化学性质完全相同。
而原子核有着不同的特性。
例如:
11H、21H、31H,它们就是元素氢的三种同位素。
又如:
59CO和60CO是元素钴的两种同位素。
235U和238U是元素铀的两种同位素
自然界中已发现107种元素,而同位素有4千余种。
原子核里的中子比质子稍多,确切地说,质子数与中子数应有一个合适的比例(如轻核约为1:
1,重核约为1:
15)。
只有这样的原子核才是稳定的,这种同位素就叫做稳定同位素。
如果质子的数目过多或过少,也即中子数目过少或过多。
原子核往往是不稳定的,它能够自发地发生变化,同时放出射线和能量。
这种原子核就叫做放射性原子核。
它组成的原子就叫做放射性同位素,如59CO是稳定同位素,60CO是放射性同位素。
放射性同位素分为天然和人工两种。
天然的就是自然界中容观存在的。
如铀、钍、镭及其子体;
以及钾、钙等等。
人工的就是通过人为的方法制造的。
如利用反应堆或加速器产生的粒子打在原子核上,发生核反应,使原子核内的质子(或中子)数目发生变化。
生成放射性同位素,60CO就是把59CO放在反应堆里照射。
吸收一个中子后变成的,所以60CO就是人工放射性同位素。
放射性原子核通过自发地变化,放出射线和能量,同时自己变成一个新的原子核。
这个过程叫做放射性衰变。
绝大多数放射性原子核衰变时主要放射三种射线(或称粒子),一种叫做α射线,它就是由2个质子和2个中子组成的氦原子核。
即12He,带有两个单位的正电荷,质量数为4。
另一种叫做β射线,它是高速运动的电子。
带1个单位的负电荷,第三种叫Υ射线,它是一种电磁波,不带电,放出哪种射线就叫做哪种衰变。
某种放射性同位素发射什么射线,能量是多少,可查阅衰变图。
亦可查阅“核素常用数据表”等书。
我国常用的放射性同位素大部分是由原子能研究院生产的,他们编有专门的产品手册。
给出了多种数据。
一定数量的放射性原子核,在每一秒钟内都有一部分在发生衰变,变成了新的原子核,也就是说,放射性原子核的数目不断减少,放射性原子核减少到原来数目的一半所经过的时间叫做半衰期,记作T½
。
单位是时间的单位,如秒、小时、天、年等等。
对每种放射性原子核来说,它是个常数。
60CO的半衰期T½
=5.3年,其意思是说,如果现在有1000个60CO原子核,由于放射性衰变,5.3年后只剩下500个了。
另外500个变成了60N1原子核,再过5.3年60CO原子核只剩下250个了。
依此类推,放射原子核60CO的数目越来越少。
放射性原子核数目随时间的减少服从指数规律,这是实验得到的结果。
如果我们已知某一时刻(t=0)的放射性核数为N0个,t时刻的核数为N(t)个,则有
N(t)=N0e-λt(1-1)
这里λ叫做衰变常数,单位1/秒或1/小时,1/年等:
e是自然对数的底,e=2.718……。
由此式,我们就可求出任意时刻所剩的放射性原子核数。
放射性活度,以往常称为放射性强度。
为习惯起见,这里仍用放射性强度的提法。
放射性强度的意思是,每秒钟内有多少个原子核发生衰变,即衰变率。
(不是放射性原子核的总数!
)理论和实验都证明了,放射性强度A随时间的变化按指数规律减弱。
A(t)=Aoe-λt(1-2)
这里A0是初始(t=0)的放射性强度;
A(t)是t时刻的放射性强度;
λ是衰变常数。
对半衰期较短的放射源,谈及强度时,一定要标明时间,即放射性强度是什么时候的强度,否则没意义。
放射性强度的专用单位叫做居里。
1居里=3.7×
1010衰变/秒(1-3)
(国际制单位叫做贝可)
1贝可=1秒-1
1居里=3.7×
1010贝可
即每秒发生3.7×
1010次衰变,或者说,一秒钟内有3.7×
1010个核发生衰变.其放射性强度就叫做1居里。
1毫居里=1/1000居里=3.7×
107衰变/秒;
1微居里=1/108居里=3.7×
104衰变/秒。
居里、毫居里也简称居、毫居。
放射性同位素有天然和人工的两种。
天然的放射性原子核存在于什么地方?
放射什么射线?
半衰期有多长?
天然放射性同位素,是和宇宙共生的。
它们与地球年龄(约109年)相同或更长。
在地球的土壤和岩石中,含有铀、钍的多种放射性同位素及它们的一系列放射性的子体。
还有46K等等。
它们的半衰期一般都很长,达108--109年。
它们放出a、β、Υ三种射线,这些放射性原子核在海水、地下水中也有微量存在。
在空气中放射性的氡(222Rn,220Rn)气,它们是由钍的子体衰变成的,所以只要地壳中的铀钍衰变不完,空气中就不断有氡气出现。
人体中除了含有少量上述的天然放射性同位素外,还有碳的放射性同位素14C,这是通过食物进入体内的。
从太阳和其它恒星发射的各种射线(俗称宇宙射线)也会射到地球上来。
它们虽然被大气层吸收了一部分,也还有一部分进入人类的生活环境。
以上所说的天然放射性同位素和射线,统称天然本底。
近年来,由于原子能电站及核武器的发展,核爆炸的放射性沉降物及核反应堆排出的废气越来越多,它们当中的放射性物质都有一部分进入人类生活的环境,我们把这些也归到天然本底中。
天然放射性同位素有些是有用的。
如铀,开采加工后可制成核燃料及核弹材料239U。
又如通过测定铀钍的放射性强度可确定地质年龄。
利用14C可确定化石及古生物的年代等等。
第二章Υ射线的防护
Υ射线仪表是一种投资小见效快效益高的工业监控仪表。
然而,正如任何事物都有二重性一样,这种仪表要用放射源,要处理好射线的安全防护问题。
由于核科学知识不普及,很多人一听到放射源,就想到原子弹,想到电视剧“血疑”,产生恐惧感。
这是一种及大的误解。
放射性和电一样,只要遵照有关的规则和标准,采取一定的安全措施,就可造福于人类,对健康没有影响。
为了使大家对放射性安全问题有一个正确的认识,本章将介绍射线防护知识及放射源的使用注意事项等。
一、描写Υ射线剂量大小的物理量和单位
当Υ射线照射物质时,一部分被物质吸收,另外一部分穿透物质。
Υ射线照射人体时,同样也要被人体组织吸收掉一部分。
这部分被人体吸收的Υ射线,有可能对人体造成一定的影响。
为了建立一个统一的尺度来衡量Υ射线对人体危害的大小,沿用了医学上表示药量多少的“剂量”一词。
也就是说,根据人体受到的Υ射线剂量的大小,来描写人体可能受到的危害程度。
为了后面讨论方便,首先介绍描写与Υ射线剂量大小有关的三种物理量和单位。
(一)Υ射线照射量X
Υ射线照射量描写的是空间某一点处的空气吸收的Υ射线的多少。
照射量X仅对空气而言。
不管放射源附近空间某一点处有无人体或其它物质存在。
该点处的照射量是一确定的值。
照射量的专用单位为伦琴(R)。
定义为:
在一个大气压0℃的标准状态下,空间某一点处的1公斤空气中,由于Υ射线照射总共产生了电荷量各为2.58×
10-4库仑的正负离子,则该点处的Υ射线照射量为1伦琴。
1伦琴=103毫伦=106微伦
同样受到1伦琴的照射,有的是1年中受到的,有的是一天或1秒钟受到的对体的影响是不同的。
因此引入照射量率X,它的单位是伦琴/小时,毫伦/小时,微伦/秒等。
上面的伦琴叫做专用单位,是历史上沿用下来的,我们国家正在推广国际制单位。
1990年以前要完成向国际制单位的过渡。
照射量的国际制单位为库仑/千克(C·
Kg-1)。
没有专门的名称和符号,两种单位的关系为:
1伦琴(R)=2.58×
10-4库仑/千克
(C·
kg)
1c·
kg-1=3.877×
103伦琴(R)
(二)Υ射线的吸收剂量D
同样的照射量下,不同的物质吸收的Υ射线能量是不一样的。
肌肉和骨胳都受了1伦琴的照射,骨胳吸收的能量要多些。
因此,又引入了吸收剂量的概念,它表示的是某种物质吸收Υ射线能量的多少。
吸收剂量的专用单位叫做拉德(rad)。
1克物质从Υ射线中吸收了100尔格的能量。
则吸收剂量为1拉德。
即:
1拉德=100尔格/克
吸收剂量率的单位是拉德/小时,毫拉德/小时等等。
吸收剂量的国际制单位叫戈瑞,符号是GY,其大小为1戈瑞=1焦耳/公斤(J·
两种单位的关系为:
1拉德(rad)=10-2戈瑞(GY)
1戈瑞(GY)=102(rad)
吸收剂量与照射量呈正比关系,即:
D=C·
X
C值随Υ射线能量及被照射物质的不同而不同,在我们所使用的60CO及137CS放射源情况,对人体组织器官来说,当D以拉德为单位,X以伦琴为单位时,C≈1。
(三)剂量当量H
射线对人体的影响,除与吸收的能量即吸收剂量大小有关外,还与射线的种类有关,也就是说,不同种类的射线对人体的影响不同。
同样是1拉德的吸收剂量,a射线对体的危害要比Υ射线大得多。
为了描述射线对生物肌体危害的大小,又引入了“剂量当量”的概念。
剂量当量等于吸收剂量乘上品质因数。
其专用单位叫做雷姆(rem)。
H=DQN
对Υ射线,品质因数Q=1,N是其它修正因子,目前指定为1。
所以当生物组织受到Υ射线照射时,吸收剂量为1拉德。
则剂量当量就是1雷姆。
如前所述,剂量当量率的单位为雷姆/时,毫雷姆/时,微雷姆/秒等等。
剂量当量的国际制单位为希沃特(SV)
1希沃特(SV)=1焦耳/公斤(Jkg)
两种单位之间的关系为:
1雷沃(rem)=10-2希沃特(SV)
1希沃特(SV)=102雷沃(rem)
上面讲了三种与Υ剂量大小有关的物理量和单位,比较难记,但有一个简单而重要的结论,应该记住,对Υ射线照渐人体组织而言,当照射量为1伦琴时,吸收剂量近似为1拉德。
剂量当量近似为1雷姆。
也就是说,三个量的单位不同,但数值大
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 放射源 安全 防护 培训教材