基于电压互感器的单相交流电压测量系统设计 精品Word格式文档下载.docx
- 文档编号:14157883
- 上传时间:2022-10-19
- 格式:DOCX
- 页数:21
- 大小:173.78KB
基于电压互感器的单相交流电压测量系统设计 精品Word格式文档下载.docx
《基于电压互感器的单相交流电压测量系统设计 精品Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《基于电压互感器的单相交流电压测量系统设计 精品Word格式文档下载.docx(21页珍藏版)》请在冰豆网上搜索。
二、系统原理及框图…………………………………………………………7
三、主要工作电路…………………………………………………………8
3.1输入电路………………………………………………8
3.1.1极性转换电路电路……………………………………8
3.1.2输入电路………………………………………………9
3.2A/D转换电路………………………………………………10
四、主要元器件的选用…………………………………………10
4.1选择单片机的种类、型号………………………………………11
4.2A/D模数转换器选择……………………………………………12
4.3电压互感器选择…………………………………………………13
五、课程设计总结…………………………………………………………14
六、参考文献……………………………………………………………14
七、附录……………………………………………………………14
7.1软件设计…………………………………………………………14
7.2系统总体设计…………………………………………………22
课程设计任务书
课程名称检测技术与系统课程设计
院(系、部、中心)电力工程学院
专业电气工程及其自动化
班级K电气101
起止日期13.6.3~13.6.14
指导教师许大宇
1.课程设计应达到的目的
通过对本课程的设计,使学生掌握常见被测量的检测原理、方法和技术,了解国内外对这些工程量进行测控的系统组建原理,通过对检测系统的设计与分析,增强学生理解和运用所学知识来解决实际问题的能力,逐步掌握根据具体测控要求、性能指标设计出先进测控系统的方法和技术。
2.课程设计题目及要求
题目:
基于电压互感器的单相交流电压测量系统设计
要求:
(1)电压测量范围:
0~100VAC,检测精度:
0.1V;
(2)根据题意,明确被控对象的功能及性能指标;
(3)根据系统要求,选择合适的电压传感器(尽量选择实验室中已有的传感器);
(4)设计传感器测量电路;
(5)选择单片机的品种、型号,设计单片机的外围测量电路;
(6)计算有关的电路参数,有条件的情况下,根据实验室现有设备进行实验数据的测取,明确测量电路输出与被测非电量的关系;
(7)画出系统原理框图(此部分放在说明书的开始);
(8)画出系统电路图,最好用PROTEL画;
(9)在说明书中详细说明本系统工作原理。
3.课程设计任务及工作量的要求〔包括课程设计计算说明书、图纸、实物样品等要求〕
(1)给出设计说明书一份;
(2)有条件的情况下尽量给出必要的实验数据;
(3)在说明书中附上完整的系统电路原理图(手画或用PROTEL画)。
4.主要参考文献
1、李现明,吴皓编著.自动检测技术.北京:
机械工业出版社,2009
2、徐仁贵.单片微型计算机应用技术.北京:
机械工业出版社.2001
3、陈爱弟.Protel99实用培训教程.北京:
人民邮电出版社.2000
5.课程设计进度安排
起止日期
工作内容
13年6月3日
布置设计任务,熟悉课题,查找资料;
13年6月4日
结合测控对象,选择合适的传感器,理解传感器性能;
13年6月5日
设计传感器测量电路,选择合适的单片机,设计其外围电路;
13年6月6日
设计电路参数,有条件情况下,在实验室进行实验,进一步理解测量电路输入输出关系;
13年6月7日
继续设计论证电路参数,完善系统设计方案;
13年6月8日
查找资料,理解系统各部分工作原理;
13年6月9日
理清系统说明要点,着手设计说明书的书写;
13年6月10日
书写设计说明书,充分理解系统每一部分作用;
13年6月13日
完善设计说明书,准备设计答辩。
13年6月14日
设计答辩。
6.成绩考核办法
平时表现30%,设计成果40%,答辩表现30%.
教研室审查意见:
教研室主任签字:
年月日
院(系、部、中心)意见:
主管领导签字:
1、题目及设计要求
二、主要设计方框图如下:
数码管显示
单片机处理
模数转换
电压采集
2.1、设计思路
由电压互感器取得一次系统的电压,选用单片机AT89C51和A/D转换芯片ADC0809通过单片机内置A/D转换器将模拟量转换成数字量,采用相应算法编程运算得到一次系统的电压电气参数,实现电压的转换和控制,用四位数码管显示出最后的转换电压结果。
2.2、电路设计原理
本实验采用AT89C51单片机芯片配合ADC0804模/数转换芯片构成一个简易的单相交流电压测量电路,原理电路如图1所示。
该电路通过ADC0804芯片采样输入口IN0输入的0~5V的模拟量电压,经过模/数转换后,产生相应的数字量经过其输出通道D0~D7传送给AT89C51芯片的P0口。
AT89C51负责把接收到的数字量经过数据处理,产生正确的7段数码管的显示段码,并通过其P1口传送给数码管。
同时它还通过其三位I/O口P1.0、P1.1、P1.2、P1.3产生位选信号,控制数码管的亮灭。
另外,AT89C51还控制着ADC0808的工作。
其ALE管脚为ADC0804提供了1MHz工作的时钟脉冲;
P2.4控制ADC0804的地址锁存端(ALE);
P2.1控制ADC0804的启动端(START);
P2.3控制ADC0804的输出允许端(OE);
P2.0控制ADC0804的转换结束信号(EOC)。
三、主要电路
3.1、输入处理电路
为了保证硬件电路设计的通用性,采用单级性电压测量的方法,将输入的双极性电压转换成单级性电压进行测量。
整个电路主要包括极性转换电路和输入处理电路。
其中,极性转换电路主要由放大电路实现,在此我采用MCP601放大芯片。
MCP601芯片:
(Microchip公司的一款高性能的放大芯片)
如图所示,该芯片共有8个管脚,
Vcc管脚:
电源管脚
GND管脚:
接地管脚
VIN-管脚:
负输入端管脚
VIN+管脚:
正输入端管脚
OUT管脚:
输出管脚
3.1.1、极性转换电路:
在进行A/D转换时,我们一般会采用芯片的工作电压作为A/D转换的参考电压。
由于一般芯片的工作电压都为正电压,而我们在这里要测量交流电压,所以要对输入的交流信号进行极性转换,将双极性变成单级性。
下图为极性转换电路:
在极性转换电路中,ADOUT为输出信号。
输出信号是在输入信号ADIN的基础上叠加了一个直流分量,调节上面的Vref的值就可以改变直流分量的值。
如果调节Vref使直流分量的值为1.5V,并且此时输入信号是幅值为1.5V的交流正弦信号,那么输出信号就为最大值为3V,最小值为0V的单级性正弦信号。
在极性转换电路基础上我们将很容易设计出我们要的输入电路。
3.1.2、输入处理电路:
在极性转换电路基础上,输入处理电路需要将100V的交流电压信号变为幅值为1.5V左右的交流信号,此外,还需要为MCP601提供适当的参考电压信号。
电路如下图所示:
从所设计的电路中我们可以得到,首先通过变压器将100V的交流电压降成3V的交流电压,再经过极性转换电路将双极性的交流电压转换为单级性的交流电压。
电路中的RV1电位器主要用调节参考电压,RV2电位器用于调节交流输入电压的幅度。
经过上面电路的处理,可以将输入的交流电压转换成0~3V的单级性交流电压,这样很容易使用AT89C51单片机通过A/D转换通道进行模拟量采集,从而实现交流电压的测量。
3.2、A/D模数转换电路
在A/D转换开始之前,逐次逼近寄存器的SAR的内容为0,在A/D转换过程中,SAR存放“试探”数字量,在转换完毕后,它的内容即为A/D转换的结果数字量。
逻辑控制与定时电路在START正脉冲启动后工作,没来一个CLK脉冲,该电路就可能告知向SAR中传送一次试探值,对应输出U0与U1比较,确定一次逼近值,经过8次逼近,即可获得最后转换的结果数字量。
此处,EOC端口的信号显示ADC0804的状态,开始A/D转换时,EOC为低电平,转换结束后,输出高电平。
3.2.1、数据处理及控制
A/D转换完毕后,单片机的P1.6口接收到一高电平,立马通过P2将OE置1,ADC0804的三态输出锁存器被打开,转换完的数字信号经过与D0~D7相连的P0口进入AT89C51。
AT89C51根据公式1-1将数字信号转换为模拟量,然后利用程序获取模拟量的每一位,分别通过P2口输出到LED上。
与此同时,AT89C51会通过P2.0~P2.3口选择用哪一段LED显示所传出的数据。
例如,当P2.0~P2.3=1110,则LED接收到的数据会在第四段LED上显示。
另外,AT89C51一旦获得了数据后便会将ST置0,即模数转换器停止转换,知道LED获得新的数据并显示出来,ST才会重新置1.由于AT89C51转换速率很快(微妙量级),所以不会影响其接收新的数据。
3.2.2、设计过程
简易交流电压测量电路由A/D转换、数据处理及显示控制等组成。
电路原理图见附录2。
A/D转换由集成电路0804完成。
0804具有8路模拟输入端口,地址(23-25)脚可决定对哪路模拟输入作A/D转换,22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存。
6脚为测试控制,当输入一个2us宽高电平脉冲时,就开始A/D转换。
7脚为A/D转换结束标志,当A/D转换结束时7脚输出高电平。
9脚为A/D转换数据输出允许控制,当OE脚为高电平时,A/D转换数据从该端口输出。
10脚为0804的时钟输入端,由外部信号源提供。
单片机的P1、P3.0-P3.3端口作为四位LED数码管现实控制。
P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。
P0端口作A/D转换数据读入用,P2端口用作0804的A/D转换控制。
四、主要元器件的选用
4.1AT89C51的选用理由
4.1.1简单概述
AT89C51是一种带4K字节闪存可编程可擦除只读存储器(FPEROM—FlashProgrammableandErasableReadOnlyMemory)的低电压、高性能CMOS8位微处理器,俗称单片机。
外形及引脚排列如图3-2所示。
图3-2AT89C51芯片模型
4.1.2主要功能特性
(1)4K字节可编程闪烁存储器。
(2)32个双向I/O口;
128×
8位内部RAM。
(3)2个16位可编程定时/计数器中断,时钟频率0-24MHz。
(4)可编程串行通道。
(5)5个中断源。
(6)2个读写中断口线。
(7)低功耗的闲置和掉电模式。
(8)片内振荡器和时钟电路。
4.1.3AT89C51的引脚介绍
89C51单片机多采用40只引脚的双列直插封装(DIP)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于电压互感器的单相交流电压测量系统设计 精品 基于 电压互感器 单相 交流 电压 测量 系统 设计