导数概念背景.docx
- 文档编号:1414258
- 上传时间:2022-10-22
- 格式:DOCX
- 页数:3
- 大小:19.56KB
导数概念背景.docx
《导数概念背景.docx》由会员分享,可在线阅读,更多相关《导数概念背景.docx(3页珍藏版)》请在冰豆网上搜索。
对中学微分学采用哪两个实例?
确需认真考虑。
应考虑到学生的知识程度、理解能力,我们主张采用牛顿、莱布尼兹创立微积分时分别用过的两个经典实例“瞬时速度”和“切线斜率”。
从直观的角度来讲,极限是我们观察运动细节的方式,运用这种方式,可以很自然地描述我们关于运
动的细节的任何概念。
关于运动变化发展的一个很基本的观念,就是变化率的观念。
应该说这个观念的起
源并不是以极限的观念为前提的,但是要清楚地表述变化率的概念,则非使用极限作为工具不可。
在实际问题当中,变化率的概念总是两个变量的比值,甚至一般是两个取确定大小的变量的比值,但
这种作法从严格的意义上讲,是一种近似。
导数的概念可以用几何图形得到非常直观的表达,因为本来微积分的概念就有很强的几何直观性质,
而我们学习微积分,从几何直观的角度来理解与把握抽象概念,则是一个不二法门,希望同学们认真对待。
应用导数概念描述物理量。
导数概念具有很强的实际问题的背景,而我们在实际问题当中总是能够遇到大量的需要应用导数概念
来加以刻划的概念,甚至可以说,导数的概念构成一种思路,当我们在处理真实世界的问题时,常常遵循
这个思路来获得对于实际对象的性质的刻划。
前面我们已经讨论了导数的几何意义,其实完全可以反过来说,正是由于当初在几何学问题中,为了
要描述斜率这个概念,才启发人们建立了抽象的一般的导数的概念。
而在其他的领域,这种相互发明的情
况是屡见不鲜的。
比方说在物理学领域,需要大量地应用导数的概念,来刻划属于变化率,增长率,强度,通量,流量
等等一大类的物理量。
例如速度,加速度,电流强度,热容,等等。
而我们在实际问题当中,更是应该善
于提取复杂现象当中所蕴涵的导数概念。
小结:
瞬时速度是平均速度当∆t趋近于0时的极限;切线是割线的极限位置;切线斜率是割线斜率∆y∆x当∆t趋近于0时的极限;
这个准确的说是微积分的产生背景,导数其实就是微商,即f'(x)=dy/dx。
从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。
比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。
”这些都是朴素的、也是很典型的极限概念。
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。
归结起来,大约有四种主要类型的问题:
第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。
第三类问题是求函数的最大值和最小值问题。
第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。
为微积分的创立做出了贡献。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。
牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。
他把连续变量叫做流动量,把这些流动量的导数叫做流数。
牛顿在流数术中所提出的中心问题是:
已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。
就是这样一片说理也颇含糊的文章,却有划时代的意义。
他以含有现代的微分符号和基本微分法则。
1686年,莱布尼茨发表了第一篇积分学的文献。
他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。
现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。
前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。
微积分也是这样。
不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。
英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。
其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。
比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。
他们的研究各有长处,也都各有短处。
那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。
应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。
他们在无穷和无穷小量这个问题上,其说不一,十分含糊。
牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。
这些基础方面的缺陷,最终导致了第二次数学危机的产生。
直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。
才使微积分进一步的发展开来。
任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。
在微积分的历史上也闪烁着这样的一些明星:
瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西……
欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。
微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 概念 背景