应用多元统计分析习题解答因子分析Word下载.docx
- 文档编号:14114083
- 上传时间:2022-10-18
- 格式:DOCX
- 页数:15
- 大小:233.96KB
应用多元统计分析习题解答因子分析Word下载.docx
《应用多元统计分析习题解答因子分析Word下载.docx》由会员分享,可在线阅读,更多相关《应用多元统计分析习题解答因子分析Word下载.docx(15页珍藏版)》请在冰豆网上搜索。
对于因子模型
因子载荷阵为
与的协方差为:
=
假设对作标准化处理,=,因此一方面表示对的依赖程度;
另一方面也反映了变量对公共因子的相对重要性。
变量共同度
说明变量的方差由两局部组成:
第一局部为共同度,它描述了全部公共因子对变量的总方差所作的奉献,反映了公共因子对变量的影响程度。
第二局部为特殊因子对变量的方差的奉献,通常称为个性方差。
而公共因子对的奉献
表示同一公共因子对各变量所提供的方差奉献之总和,它是衡量每一个公共因子相对重要性的一个尺度。
7.4在进行因子分析时,为什么要进行因子旋转?
最大方差因子旋转的根本思路是什么?
因子分析的目标之一就是要对所提取的抽象因子的实际含义进行合理解释。
但有时直接根据特征根、特征向量求得的因子载荷阵难以看出公共因子的含义。
这种因子模型反而是不利于突出主要矛盾和矛盾的主要方面的,也很难对因子的实际背景进行合理的解释。
这时需要通过因子旋转的方法,使每个变量仅在一个公共因子上有较大的载荷,而在其余的公共因子上的载荷比拟小。
最大方差旋转法是一种正交旋转的方法,其根本思路为:
A
其中令
的第列元素平方的相对方差可定义为
最大方差旋转法就是选择正交矩阵,使得矩阵所有m个列元素平方的相对方差之和到达最大。
7.5试分析因子分析模型与线性回归模型的区别与联系。
因子分析模型是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法的模型。
而线性回归模型回归分析的目的是设法找出变量间的依存(数量)关系,用函数关系式表达出来。
因子分析模型中每一个变量都可以表示成公共因子的线性函数与特殊因子之和。
即
,〔〕该模型可用矩阵表示为:
而回归分析模型中多元线性回归方程模型为:
其中是常数项,是偏回归系数,是残差。
因子模型满足:
〔1〕;
〔2〕,即公共因子与特殊因子是不相关的;
〔3〕,即各个公共因子不相关且方差为1;
〔4〕,即各个特殊因子不相关,方差不要求相等。
而回归分析模型满足〔1〕正态性:
随机误差〔即残差〕e服从均值为0,方差为σ2的正态分布;
〔2〕等方差:
对于所有的自变量x,残差e的条件方差为σ2,且σ为常数;
〔3〕独立性:
在给定自变量x的条件下,残差e的条件期望值为0〔本假设又称零均值假设〕;
〔4〕无自相关性:
各随机误差项e互不相关。
两种模型的联系在于都是线性的。
因子分析的过程就是一种线性变换。
7.6设某客观现象可用X=()’来描述,在因子分析时,从约相关阵出发计算出特征值为由于,所以找前两个特征值所对应的公共因子即可,又知对应的正那么化特征向量分别为(0.707,-0.316,0.632)’及〔0,,〕’,要求:
〔1〕计算因子载荷矩阵A,并建立因子模型。
〔2〕计算共同度。
〔3〕计算第一公因子对X的“奉献〞。
解:
〔1〕根据题意,A=
建立因子模型为
〔2〕
〔3〕因为是从约相关阵计算的特征值,所以公共因子对X的“奉献〞为。
7.7利用因子分析方法分析以下30个学生成绩的因子构成,并分析各个学生较适合学文科还是理科。
序号
数学
物理
化学
语文
历史
英语
1
65
61
72
84
81
79
2
77
76
64
70
55
3
67
63
49
57
4
80
69
75
74
5
6
78
62
71
7
66
52
8
86
9
83
100
41
50
10
94
97
51
11
88
73
12
53
58
56
13
14
15
96
89
16
17
90
68
60
18
19
85
20
21
91
22
87
23
82
24
25
95
59
26
27
98
47
28
29
54
30
解:
令数学成绩为X1,物理为X2,化学为X3,语文为X4,历史为X5,英语为X1,用spss分析学生成绩的因子构成的步骤如下:
1.在SPSS窗口中选择Analyze→DataReduction→Factor,调出因子分析主界面,并将六个变量移入Variables框中。
图7.1因子分析主界面
2.点击Descriptives按钮,展开相应对话框,见图。
选择Initialsolution复选项。
这个选项给出各因子的特征值、各因子特征值占总方差的百分比以及累计百分比。
单击Continue按钮,返回主界面。
图7.2Descriptives子对话框
3.点击Extraction按钮,设置因子提取的选项,见图。
在Method下拉列表中选择因子提取的方法,SPSS提供了七种提取方法可供选择,一般选择默认选项,即“主成分法〞。
在Analyze栏中指定用于提取因子的分析矩阵,分别为相关矩阵和协方差矩阵。
在Display栏中指定与因子提取有关的输出项,如未旋转的因子载荷阵和因子的碎石图。
在Extract栏中指定因子提取的数目,有两种设置方法:
一种是在Eigenvaluesover后的框中设置提取的因子对应的特征值的范围,系统默认值为1,即要求提取那些特征值大于1的因子;
第二种设置方法是直接在Numberoffactors后的矩形框中输入要求提取的公因子的数目。
这里我们均选择系统默认选项,单击Continue按钮,返回主界面。
图7.3Extraction子对话框
4.点击Rotation按钮,设置因子旋转的方法。
这里选择Varimax(方差最大旋转),并选择Display栏中的Rotatedsolution复选框,在输出窗口中显示旋转后的因子载荷阵。
图7.4Rotation子对话框
5.点击Scores按钮,设置因子得分的选项。
选中Saveasvariables复选框,将因子得分作为新变量保存在数据文件中。
选中Displayfactorscorecoefficientmatrix复选框,这样在结果输出窗口中会给出因子得分系数矩阵。
单击Continue按钮返回主界面。
图7.5Scores子对话框
6.单击OK按钮,运行因子分析过程。
结果分析:
表7.1旋转前因子载荷阵表7.2旋转后因子载荷阵
成份矩阵a
成份
x1
.503
x2
.478
x3
.605
x4
.900
.233
x5
.857
.357
x6
.816
.498
提取方法:
主成分分析法。
旋转成份矩阵a
.795
.698
.815
.867
.904
.953
从表中可以看出,每个因子在不同原始变量上的载荷没有明显的差异,为了便于对因子进行命名,需要对因子载荷阵进行旋转,得表。
经过旋转后的载荷系数已经明显地两极分化了。
第一个公共因子在后三个指标上有较大载荷,说明这三个指标有较强的相关性,可以归为一类,属于文科学习能力的指标;
第二个公共因子在前三个指标上有较大载荷,同样可以归为一类,这三个指标同属于理科学习能力的指标。
根据表易得:
表7.3因子得分系数矩阵
将每个学生的六门成绩分别代入F1、F2,比拟两者的大小,F1大的适合学文,F2大的适合学理。
计算结果为学号是1、16、24的学生适合学文,其余均适合学理。
7.8某汽车组织欲根据一系列指标来预测汽车的销售情况,为了防止有些指标间的相关关系影响预测结果,需首先进行因子分析来简化指标系统。
下表是抽查欧洲某汽车市场7个品牌不同型号的汽车的各种指标数据,试用因子分析法找出其简化的指标系统。
品牌
价格
发动机
功率
轴距
宽
长
燃料容量
燃料效率
21500
140
28400
225
42000
210
B
23990
150
33950
200
62000
310
C
26990
170
33400
193
38900
D
21975
175
25300
240
31965
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 多元 统计分析 习题 解答 因子分析