半导体物理刘恩科详细归纳总结Word文档格式.docx
- 文档编号:14066849
- 上传时间:2022-10-17
- 格式:DOCX
- 页数:26
- 大小:724.20KB
半导体物理刘恩科详细归纳总结Word文档格式.docx
《半导体物理刘恩科详细归纳总结Word文档格式.docx》由会员分享,可在线阅读,更多相关《半导体物理刘恩科详细归纳总结Word文档格式.docx(26页珍藏版)》请在冰豆网上搜索。
反之,温度降低,将导致禁带变宽。
因此,Ge、Si的禁带宽度具有负温度系数。
1-3、解:
空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:
A、荷正电:
+q;
B、空穴浓度表示为p(电子浓度表示为n);
C、EP=-En
D、mP*=-mn*。
1-4、解:
(1)
Ge、Si:
a)Eg(Si:
0K)=1.21eV;
Eg(Ge:
0K)=1.170eV;
b)间接能隙结构
c)禁带宽度Eg随温度增加而减小;
(2)
GaAs:
a)Eg(300K)=1.428eV,Eg(0K)=1.522eV;
b)直接能隙结构;
c)Eg负温度系数特性:
dEg/dT=-3.95×
10-4eV/K;
1-5、
解:
(1)由题意得:
(2)
答:
能带宽度约为1.1384Ev,能带顶部电子的有效质量约为1.925x10-27kg,能带底部电子的有效质量约为-1.925x10-27kg。
第二章、半导体中的杂质和缺陷能级
2-1、什么叫浅能级杂质?
它们电离后有何特点?
2-2、什么叫施主?
什么叫施主电离?
施主电离前后有何特征?
试举例说明之,并用能带图表征出n型半导体。
2-3、什么叫受主?
什么叫受主电离?
受主电离前后有何特征?
试举例说明之,并用能带图表征出p型半导体。
2-4、掺杂半导体与本征半导体之间有何差异?
试举例说明掺杂对半导体的导电性能的影响。
2-6、深能级杂质和浅能级杂质对半导体有何影响?
2-7、何谓杂质补偿?
杂质补偿的意义何在?
2-1、解:
浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。
它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,并同时向导带提供电子或向价带提供空穴。
2-2、解:
半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主。
施主电离成为带正电离子(中心)的过程就叫施主电离。
施主电离前不带电,电离后带正电。
例如,在Si中掺P,P为Ⅴ族元素,本征半导体Si为Ⅳ族元素,P掺入Si中后,P的最外层电子有四个与Si的最外层四个电子配对成为共价电子,而P的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子。
这个过程就是施主电离。
n型半导体的能带图如图所示:
其费米能级位于禁带上方
2-3、解:
半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主。
受主电离成为带负电的离子(中心)的过程就叫受主电离。
受主电离前带不带电,电离后带负电。
例如,在Si中掺B,B为Ⅲ族元素,而本征半导体Si为Ⅳ族元素,P掺入B中后,B的最外层三个电子与Si的最外层四个电子配对成为共价电子,而B倾向于接受一个由价带热激发的电子。
这个过程就是受主电离。
p型半导体的能带图如图所示:
其费米能级位于禁带下方
2-4、解:
在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。
掺杂半导体又分为n型半导体和p型半导体。
例如,在常温情况下,本征Si中的电子浓度和空穴浓度均为1.5╳1010cm-3。
当在Si中掺入1.0╳1016cm-3后,半导体中的电子浓度将变为1.0╳1016cm-3,而空穴浓度将近似为2.25╳104cm-3。
半导体中的多数载流子是电子,而少数载流子是空穴。
2-6、解:
深能级杂质在半导体中起复合中心或陷阱的作用。
浅能级杂质在半导体中起施主或受主的作用。
2-7、当半导体中既有施主又有受主时,施主和受主将先互相抵消,剩余的杂质最后电离,这就是杂质补偿。
利用杂质补偿效应,可以根据需要改变半导体中某个区域的导电类型,制造各种器件。
第三章、半导体中载流子的统计分布
3-1、对于某n型半导体,试证明其费米能级在其本征半导体的费米能级之上。
即EFn>
EFi。
3-2、试分别定性定量说明:
(1)在一定的温度下,对本征材料而言,材料的禁带宽度越窄,载流子浓度越高;
(2)对一定的材料,当掺杂浓度一定时,温度越高,载流子浓度越高。
3-3、若两块Si样品中的电子浓度分别为2.25×
1010cm-3和6.8×
1016cm-3,试分别求出其中的空穴的浓度和费米能级的相对位置,并判断样品的导电类型。
假如再在其中都掺入浓度为2.25×
1016cm-3的受主杂质,这两块样品的导电类型又将怎样?
3-4、含受主浓度为8.0×
106cm-3和施主浓度为7.25×
1017cm-3的Si材料,试求温度分别为300K和400K时此材料的载流子浓度和费米能级的相对位置。
3-5、试分别计算本征Si在77K、300K和500K下的载流子浓度。
3-6、Si样品中的施主浓度为4.5×
1016cm-3,试计算300K时的电子浓度和空穴浓度各为多少?
3-7、某掺施主杂质的非简并Si样品,试求EF=(EC+ED)/2时施主的浓度。
解:
3-1、证明:
设nn为n型半导体的电子浓度,ni为本征半导体的电子浓度。
显然
nn>
ni
即
得证。
3-2、解:
(1)在一定的温度下,对本征材料而言,材料的禁带宽度越窄,则跃迁所需的能量越小,所以受激发的载流子浓度随着禁带宽度的变窄而增加。
由公式:
也可知道,温度不变而减少本征材料的禁带宽度,上式中的指数项将因此而增加,从而使得载流子浓度因此而增加。
(2)对一定的材料,当掺杂浓度一定时,温度越高,受激发的载流子将因此而增加。
由公式
可知,这时两式中的指数项将因此而增加,从而导致载流子浓度增加。
3-3、解:
由
得:
可见,
又因为,则
1016cm-3的受主杂质,那么将出现杂质补偿,第一种半导体补偿后将变为p型半导体,第二种半导体补偿后将近似为本征半导体。
第一种半导体中的空穴的浓度为1.1x1010cm-3,费米能级在价带上方0.234eV处;
第一种半导体中的空穴的浓度为3.3x103cm-3,费米能级在价带上方0.331eV处。
掺入浓度为2.25×
1016cm-3的受主杂质后,第一种半导体补偿后将变为p型半导体,第二种半导体补偿后将近似为本征半导体。
3-4、解:
由于杂质基本全电离,杂质补偿之后,有效施主浓度
则300K时,
电子浓度
空穴浓度
费米能级为:
在400K时,根据电中性条件
和
得到:
300K时此材料的电子浓度和空穴浓度分别为7.25x1017cm-3和3.11x102cm-3,费米能级在价带上方0.3896eV处;
400K时此材料的电子浓度和空穴浓度分别近似为为7.248x1017cm-3和1.3795x108cm-3,费米能级在价带上方0.08196eV处。
3-5、解:
假设载流子的有效质量近似不变,则
所以,由,有:
77K下载流子浓度约为1.159×
10-20cm-3,300K下载流子浓度约为3.5×
1019cm-3,500K下载流子浓度约为1.669×
1014cm-3。
3-6、解:
在300K时,因为ND>
10ni,因此杂质全电离
n0=ND≈4.5×
1016cm-3
300K时样品中的的电子浓度和空穴浓度分别是4.5×
1016cm-3和5.0×
103cm-3。
3-7、解:
由于半导体是非简并半导体,所以有电中性条件
n0=ND+
ND为二倍NC。
第四篇半导体的导电性习题
4-1、对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?
试加以定性分析。
4-2、何谓迁移率?
影响迁移率的主要因素有哪些?
4-3、试定性分析Si的电阻率与温度的变化关系。
4-4、证明当µ
n≠µ
p,且电子浓度,空穴浓度时半导体的电导率有最小值,并推导的表达式。
4-5、0.12kg的Si单晶掺有3.0×
10-9kg的Sb,设杂质全部电离,试求出此材料的电导率。
(Si单晶的密度为2.33g/cm3,Sb的原子量为121.8)
4-1、解:
对于重掺杂半导体,在低温时,杂质散射起主体作用,而晶格振动散射与一般掺杂半导体的相比较,影响并不大,所以这时侯随着温度的升高,重掺杂半导体的迁移率反而增加;
温度继续增加后,晶格振动散射起主导作用,导致迁移率下降。
对一般掺杂半导体,由于杂质浓度较低,电离杂质散射基本可以忽略,起主要作用的是晶格振动散射,所以温度越高,迁移率越低。
4-2、解:
迁移率是单位电场强度下载流子所获得的漂移速率。
影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。
4-3、解:
Si的电阻率与温度的变化关系可以分为三个阶段:
(1)温度很低时,电阻率随温度升高而降低。
因为这时本征激发极弱,可以忽略;
载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。
(2)温度进一步增加(含室温),电阻率随温度升高而升高。
在这一温度范围内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。
对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。
(3)
温度再进一步增加,电阻率随温度升高而降低。
这时本征激发越来越多,虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。
当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。
4-4、证明:
得证。
4-5、解:
故材料的电导率为:
此材料的电导率约为24.04Ω-1cm-1。
第五章、非平衡载流子习题
5-1、何谓非平衡载流子?
非平衡状态与平衡状态的差异何在?
5-2、漂移运动和扩散运动有什么不同?
5-3、漂移运动与扩散运动之间有什么联系?
非简并半导体的迁移率与扩散系数之间有什么联系?
5-4、平均自由程与扩散长度有何不同?
平均自由时间与非平衡载流子的寿命又有何不同?
5-5、证明非平衡载流子的寿命满足,并说明式中各项的物理意义。
5-6、导出非简并载流子满足的爱因斯坦关系。
5-7、间接复合效应与陷阱效应有何异同?
5-8、光均匀照射在6的n型Si样品上,电子-空穴对的产生率为4×
1021cm-3s-1,样品寿命为8µ
s。
试计算光照前后样品的电导率。
5-9、证明非简并的非均匀半导体中的电子电流形式为。
5-10、假设Si中空穴浓度是线性分布,在4µ
m内的浓度差为2×
1016cm-3,试计算空穴的扩散电流密度。
5-11、试证明在小信号条件下,本征半导体
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 半导体 物理 刘恩科 详细 归纳 总结