漳州市初中毕业班质量检测数学试题及答案Word下载.docx
- 文档编号:13992802
- 上传时间:2022-10-16
- 格式:DOCX
- 页数:17
- 大小:219.85KB
漳州市初中毕业班质量检测数学试题及答案Word下载.docx
《漳州市初中毕业班质量检测数学试题及答案Word下载.docx》由会员分享,可在线阅读,更多相关《漳州市初中毕业班质量检测数学试题及答案Word下载.docx(17页珍藏版)》请在冰豆网上搜索。
A.既是轴对称图形,又是中心对称图形
B.是中心对称图形,但不是轴对称图形
C.是轴对称图形,但不是中心对称图形
D.既不是轴对称图形,也不是中心对称图形
8.甲、乙两地今年2月份前5天的日平均气温如图所示,则下列描述错误的是().
A.两地气温的平均数相同
B.甲地气温的众数是4℃
C.乙地气温的中位数是6℃
D.甲地气温相对比较稳定
9.如图,正六边形ABCDEF的中心与坐标原点0重合,其中A(-2,0).
将六边形ABCDEF绕原点O按顺时针方向旋转2018次,每次旋转
60°
,则旋转后点A的对应点A'
的坐标是().
A.(1,)B.(,1)C.(1,)D.(-1,)
10.如图,在矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且
C、D两点在函数y=的图象上,若在矩形ABCD
内随机取一点,则此点取自阴影部分的概率是().
A.B.C.D.
二,填空题(本大题共6小题,每小题4分,共24分)
11.因式分解:
=________.
12.一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意搞出3个球,则事件“摸出的球至少有1个红球”是________事件(填“必然”、“随机”或“不可能”)
13.如图,DE是△ABC的中位线,若△ADE的面积为3,则△ABC的面
积为________.
14.“若实数a,b,c满足a<
b<
c,则a+b<
c”,能够说明该命题是假命题的
一组a,b,c的值依次为________.
15.如图,在□ABCD中,点E,F分别在边AD、BC上,BF=2,∠DEF
=60°
将四边形EFCD沿EF翻折,得到四边形EFC’D’,ED’交BC于点
G,则△GEF的周长为________.
16.如图,双曲线y=(x>
0)经过A、B两点,若点A的横坐标为1,
∠OAB=90°
,且OA=AB,则k的值为________.
三、解答题(本大题共9小题,共86分)
17.(8分)计算:
18.(8分)如图,在△ABC中,∠A=80°
,∠B=40°
.
(1)求作线段BC的垂直平分线DE,垂足为E,交AB于点D;
(要求;
尺规作图,保留作图痕迹,不写作法)
(2)在
(1)的条件下,连接CD,求证:
AC=CD.
19.(8分)求证:
对角线相等的平行四边形是矩形.
(要求:
画出图形,写出已知和求证,并给予证明)
20.(8分)为响应市收府关于”垃圾不落地·
市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:
非常了解,B:
比较了解C:
了解较少,D:
不了解”四种,并将调查结果绘制成以下两幅不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)把两幅统计图补充完整;
(2)若该校学生数1000名,根据调查结果,
估计该校“非常了解”与“比较了解”的学
生共有________名;
(3)已知“非常了解”的4名男生和1名女生,从
中随机抽取2名向全校做垃圾分类的知识交流,
请用画树状图或列表的方法,求恰好抽到1男1女的概率.
21.(8分)如图,AB是⊙0的直径,AC是弦,D是BC的中点,过点D作
EF垂直于直线AC,垂足为F,交AB的延长线于点E.
(1)求证:
EF是⊙0的切线;
(2)若tanA=,AF=6,求⊙0的半径.
22.(10分)某景区售票处规定:
非节假日的票价打a折售票;
节假日根据团队人数x(人)实行分段售票:
若10,则按
原展价购买;
若x>
10,则其中10人按原票价购买,超过部
分的按原那价打b折购买.某旅行社带团到该景区游览,
设在非节假日的购票款为y1元,在节假日的购票款为y2元,
y1、y2与x之间的函数图象如图所示.
(1)观察图象可知:
a________,b________;
(2)当x>
10时,求y2与x之间的函数表达式;
(3)该旅行社在今年5月1目带甲团与5月10日(非节假日)带乙国到该景区游览,两团合计50人,共付门票款3120元,已知甲团人数超过10人,求甲团人数与乙团人数.
23.(10分)阅读:
所谓勾股数就是满足方程x2+y2=z2的正整数解,即满足勾股定理的三个正整数构成的
一组数.我国古代数学专著《九章算术》一书,在世界上第一次给出该方程的解为:
,y=mn,,其中m>
n>
0,m、n是互质的奇数.
应用:
当n=5时,求一边长为12的直角三角形另两边的长.
24.(12分)已知抛物线(a、b、c是常数,)的对称轴为直线.
(1)b=______;
(用含a的代数式表示)
(2)当时,若关于x的方程在的范围内有解,求c的取值范围;
(3)若抛物线过点(,),当时,抛物线上的点到x轴距离的最大值为4,求a的值.
25.(14分)如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(与点0不重合),
作AF⊥BE,垂足为G,交BC于F,交B0于H,连接0G,CC.
(1)求证:
AH=BE;
(2)试探究:
∠AGO的度数是否为定值?
请说明理由;
(3)若OG⊥CG,BG=,求△OGC的面积.
2018年漳州市初中毕业班质量检测
数学参考答案及评分建议
1
2
3
4
5
6
7
8
9
10
A
B
D
C
二、填空题(本大题共6小题,每小题4分,共24分)
11.a(x+1)(x-1);
12.必然;
13.12;
14.答案不唯一,如1,2,3;
15.6;
16..
17.(本小题满分8分)
解:
原式=……………………………………………………………………6分
=1.……………………………………………………………………8分
18.(本小题满分8分)
(1)如图,直线DE为所求作的垂直平分线,点D,E就是所求作的点;
…………4分
(没标字母或字母标错扣1分)
(2)连接CD.
方法一:
∵DE垂直平分AB,
∴BD=CD,
∴∠1=∠B=40°
.……………………………5分
∴∠2=∠B+∠1=80°
.……………………6分
∵∠A=80°
∴∠2=∠A.…………………………………………………………7分
∴AC=CD.……………………………………………………………8分
方法二:
.………………………………………………………5分
∴∠ACB=180°
-∠A-∠B=60°
.
∴∠ACD=60°
-40°
=20°
.……………………………………………6分
∴∠2=180°
-∠A-∠ACD=80°
=∠A.…………………………………7分
∴AC=CD.……………………………………………………………8分
19.(本小题满分8分)
已知:
如图,在□ABCD中,AC=BD.(画图2分,已知1分)………………3分
求证:
□ABCD是矩形.…………………………………………………………4分
证明:
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.…………………5分
∵AC=BD,BC=BC,
∴△ABC≌△DCB.
∴∠ABC=∠DCB.………………………………………………6分
∵AB∥CD,
∴∠ABC+∠DCB=180°
∴∠ABC=°
=90°
.…………………………………………7分
∴□ABCD是矩形.……………………………………………………8分
设AC,BD交于点O.
∴OA=OC,OB=OD.………………5分
∵AC=BD,
∴OA=OC=OB.
∴∠1=∠3,∠2=∠4.……………………………………………6分
∴∠ABC=∠1+∠2=°
.…………………………………7分
∴□ABCD是矩形.………………………………………………8分
20.(本小题满分8分)
(1)如图所示(补充2个或3个正确,得1分);
…………………………………2分
(2)500;
………4分
(3)树状图法:
………………………………………6分
共有12种等可能结果,其中满足条件有6种,∴P(一男一女)=.………………8分
(用列表法参照给分)
21.(本小题满分8分)
(1)方法一:
如图1,连接OD.
∵EF⊥AF,∴∠F=90°
∵D是的中点,∴.
∴∠1=∠2=∠BOC.………………………………………………1分
∵∠A=∠BOC,∴∠A=∠1.………………………………………2分
∴OD∥AF.
∴∠EDO=∠F=90°
.
∴OD⊥EF.……………………………………………………………3分
∴EF是⊙O的切线.……………………………………………………4分
如图2,连接OD,BC.
∴∠1=∠2.…………………………………………………………1分
∵OB=OC,
∴OD⊥BC.……………………………2分
∵AB是⊙O的直径,∴∠ACB=90°
∵AF⊥EF,
∴∠F=∠ACB=90°
∴BC∥EF.
∴OD⊥EF.……………………………………………………………3分
∴EF是⊙O的切线.…………………………………………………4分
(2)设⊙O半径为r,则OA=OD=OB=r.
方法一:
在Rt△AFE中,tanA=,AF=6,
∴EF=AF·
tanA=8.
∴.………………5分
∴OE=10-r.
∵cosA=,………………………………………………………6分
∴cos∠1=cosA=.……………………………………7分
∴r=,即⊙O的半径为.……………………………………8分
∴EO=10-r.
∵∠A=∠1,∠E=∠E,
∴△EOD∽△EAF.……………………………………………………6分
∴.………………………………………
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 漳州市 初中 毕业班 质量 检测 数学试题 答案