第三章13可线性化的回归分析复习进程Word文档下载推荐.docx
- 文档编号:13933072
- 上传时间:2022-10-15
- 格式:DOCX
- 页数:16
- 大小:161.86KB
第三章13可线性化的回归分析复习进程Word文档下载推荐.docx
《第三章13可线性化的回归分析复习进程Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《第三章13可线性化的回归分析复习进程Word文档下载推荐.docx(16页珍藏版)》请在冰豆网上搜索。
u=c+bx
y=ae
v=
u=lny
y=a+blnx
v=lnxu=y
u=a+bv
要点一 线性回归分析
例1 某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元)
4
2
3
5
销售额y(万元)
49
26
39
54
(1)由数据易知y与x具有线性相关关系,若b=9.4,求线性回归方程y=a+bx;
(2)据此模型预报广告费用为4万元时的销售额.
解
(1)==3.5,==42,
∴a=-b=42-9.4×
3.5=9.1
∴回归直线方程为y=9.1+9.4x.
(2)当x=4时,y=9.1+9.4×
4=46.7,
故广告费用为6万元时销售额为46.7万元.
跟踪演练1 为了研究3月下旬的平均气温(x)与4月20日前棉花害虫化蛹高峰日(y)的关系,某地区观察了2006年2011年的情况,得到了下面的数据:
年份
2006
2007
2008
2009
2010
2011
x/℃
24.4
29.6
32.9
28.7
30.3
28.9
y/日
19
6
1
10
8
(1)对变量x,y进行相关性检验;
(2)据气象预测,该地区在2012年3月下旬平均气温为27℃,试估计2012年4月化蛹高峰日为哪天.
解 制表.
i
xi
yi
≈29.13,y2=563,=7.5,x=5130.92,
xiyi=1222.6
(1)r=≈-0.9498.
由|r|>0.75,可知变量y和x存在很强的线性相关关系.
(2)b=≈-2.3,a=-b≈74.5.所以,线性回归方程为y=74.5-2.3x.当x=27时,y=74.5-2.3×
27=12.4.据此,可估计该地区2012年4月12日或13日为化蛹高峰日.
要点二 可线性化的回归分析
例2 在一化学反应过程中,化学物质的反应速度y(g/min)与一种催化剂的量x(g)有关,现收集了8组观测数据列于表中:
催化剂的量x/g
15
18
21
24
27
30
33
36
化学物质的反应速度y(g·
min-1)
70
205
65
350
解 根据收集的数据,作散点图(如图),根据已有的函数知识,可以发现样本点分布在某一条指数函数曲数y=c1ec2x的周围,其中c1和c2是待定的参数.
令z=lny,则z=lny=lnc1+c2x,
即变换后的样本点应该分布在直线z=a+bx(a=lnc1,b=c2)的周围.
由y与x的数据表可得到变换后的z与x的数据表:
x
z
1.792
2.079
3.401
3.296
4.248
5.323
4.174
5.858
作出z与x的散点图(如图).
由散点图可观察到,变换后的样本点分布在一条直线的附近,所以可用线性回归方程来拟合.
由z与x的数据表,可得线性回归方程:
z=0.848+0.81x,
所以y与x之间的非线性回归方程为
y=e-0.848+0.81x.
规律方法 可线性化的回归分析问题,画出已知数据的散点图,选择跟散点拟合得最好的函数模型进行变量代换,作出变换后样本点的散点图,用线性回归模型拟合.
跟踪演练2 电容器充电后,电压达到100V,然后开始放电,由经验知道,此后电压U随时间t变化的规律用公式U=Aebt(b<0)表示,现测得时间t(s)时的电压U(V)如下表:
t/s
7
9
U/V
100
75
55
40
20
试求:
电压U对时间t的回归方程.(提示:
对公式两边取自然对数,把问题转化为线性回归分析问题)
解 对U=Aebt两边取对数得lnU=lnA+bt,令y=lnU,a=lnA,x=t,则y=a+bx,得y与x的数据如下表:
y
4.6
4.3
4.0
3.7
3.4
3.0
2.7
2.3
1.6
根据表中数据作出散点图,如下图所示,从图中可以看出,y与x具有较强的线性相关关系,由表中数据求得=5,≈3.045,进而可以求得b≈-0.313,
a=-b=4.61,所以y对x的线性回归方程为y=4.61-0.313x.
由y=lnU,得U=ey,U=e4.61-0.313x=e4.16·
e-0.313x,因此电压U对时间t的回归方程为U=e4.61·
e-0.313x.
要点三 非线性回归模型的综合应用
例3 某地区不同身高的未成年男性的体重平均值如下表:
身高x/cm
60
80
90
110
体重y/kg
6.13
7.90
9.99
12.15
15.02
17.50
120
130
140
150
160
170
20.92
26.86
31.11
38.85
47.25
55.05
试建立y与x之间的回归方程.
解 根据题干表中数据画出散点图如图所示.
由图看出,样本点分布在某条指数函数曲线y=c1ec2x的周围,于是令z=lny.
1.81
2.07
2.30
2.50
2.71
2.86
3.04
3.29
3.44
3.66
3.86
4.01
画出散点图如图所示.
由表中数据可得z与x之间的线性回归方程:
z=0.693+0.020x,则有y=e0.693+0.020x.
规律方法 根据已有的函数知识,可以发现样本分布在某一条指数型函数曲线y=c1ec2x的周围,其中c1和c2是待定参数;
可以通过对x进行对数变换,转化为线性相关关系.
跟踪演练3 对两个变量x,y取得4组数据(1,1),(2,1.2),(3,1.3),(4,1.37),甲、乙、丙三人分别求得数学模型如下:
甲 y=0.1x+1,
乙 y=-0.05x2+0.35x+0.7,
丙 y=-0.8·
0.5x+1.4,试判断三人谁的数学模型更接近于客观实际.
解 甲模型,当x=1时,y=1.1;
当x=2时,y=1.2;
当x=3时,y=1.3;
当x=4时,y=1.4.
乙模型,当x=1时,y=1;
当x=4时,y=1.3.
丙模型,当x=1时,y=1;
当x=4时,y=1.35.
观察4组数据并对照知,丙的数学模型更接近于客观实际.
1.在一次试验中,当变量x的取值分别为1,,,时,变量y的值分别为2,3,4,5,则y与的回归方程为( )
A.y=+1B.y=+3
C.y=2x+1D.y=x-1
答案 A
解析 由数据可得,四个点都在曲线y=+1上.
2.某种产品的广告费支出与销售额(单位:
百万元)之间有如下对应数据:
广告费
销售额
50
则广告费与销售额间的相关系数为( )
A.0.819B.0.919C.0.923D.0.95
答案 B
3.根据统计资料,我国能源生产发展迅速.下面是我国能源生产总量(单位:
亿吨标准煤)的几个统计数据:
1996
2001
产量
12.9
16.1
19.3
22.3
根据有关专家预测,到2020年我国能源生产总量将达到27.6亿吨左右,则专家所选择的回归模型是下列四种模型中的哪一种( )
A.y=ax+b(a≠0)B.y=ax2+bx+c(a≠0)
C.y=ax(a>
0且a≠1)D.y=logax(a>
0且a≠1)
4.某种产品的广告费支出x与销售额y之间有下表关系,现在知道其中一个数据弄错了,则最可能错的数据是__________.
x/万元
y/万元
答案 (6,50)
一、基础达标
1.下表提供了某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据.根据表中提供的数据,求出y关于x的线性回归方程是y=0.7x+0.35,那么表中t的值是( )
2.5
t
4.5
A.4.5B.4C.3D.3.15
答案 C
2.下列数据x,y符合哪一种函数模型( )
2.69
3.38
3.6
3.8
4.08
4.2
A.y=2+xB.y=2ex
C.y=2eD.y=2+lnx
答案 D
解析 取x=1,2,…,10分别代入各解析式判断.
3.指数曲线y=aebx的图像为( )
解析 ∵y=aebx,∴a>0时y>0,排除A、C,且x∈R,排除D,选B.
4.为研究广告费用x与销售额y之间的关系,有人抽取了5家餐厅,得到的数据如下表:
广告费用x/千元
1.0
6.0
10.0
14.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三章 13可线性化的回归分析复习进程 第三 13 线性化 回归 分析 复习 进程