第四章变量之间的关系Word文件下载.docx
- 文档编号:13911987
- 上传时间:2022-10-15
- 格式:DOCX
- 页数:22
- 大小:238.71KB
第四章变量之间的关系Word文件下载.docx
《第四章变量之间的关系Word文件下载.docx》由会员分享,可在线阅读,更多相关《第四章变量之间的关系Word文件下载.docx(22页珍藏版)》请在冰豆网上搜索。
14
16
24
接受能力
43
47.8
59
59.8
59.9
(1)表中反映了哪两个变量之间的关系,哪个是自变量?
哪个是因变量?
(2)根据表中的数据,你认为老师在第____分钟提出观念比较适宜?
说出你的理由.
二、学习过程:
(一)要点引导
1、在一个变化过程中数值保持不变的量叫做______可以取不同数值的量叫做______,如果一个量随着另外一个量的变化而变化,那么把这个量叫做______,另一个量叫做______.
2、本节是通过______形式来表示两个变量之间的关系的.
(二)例题
例1王波学习小组利用同一块木板,测量了小车从不同高度下滑的时间.他们得到如下数据:
支撑物高
度/厘米
20
30
40
50
60
70
80
90
100
小车下滑
时间/秒
4.23
3.00
2.45
2.13
1.89
1.71
1.59
1.50
1.41
1.35
(1)支撑物高度为70厘米时,小车下滑时间是多少?
(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?
(3)h每增加10厘米,t的变化情况相同吗?
(4)估计当h=110时,t的值是多少,你是怎样估计的?
变式:
一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:
时间(秒)
1
3
4
5
6
7
8
9
速度
(米/秒)
0.3
1.3
2.8
4.9
7.6
11.0
14.1
18.4
24.2
28.9
(1)上表反映了哪两个变量之间的关系?
哪个是自变量?
(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?
(3)当t每增加1秒时,v的变化情况相同吗?
在哪1秒钟内,v的增加最大?
(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?
(三)拓展:
1、如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;
第二层每边两个点;
第三层每边有三个点,依此类推:
(1)填写下表:
层数
1
2
3
4
5
6
……
该层的点数
所有层的点数
(2)每层点数是如何随层数的变化而变化的?
所有层的总点数是如何随层数的变化而变化的?
(3)此题中的自变量和因变量分别是什么?
(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;
(5)如果某一层的点数是96,它是第几层?
(6)有没有一层,它的点数是100?
为什么?
2、下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:
元),日销量(单位:
件)发生相应变化如下表:
降价(元)
15
25
35
日销量(件)
780
810
840
870
900
930
960
其中那个是自变量,哪个是因变量?
(2)每降价5元,日销量增加多少件?
请你估计降价之前的日销量是多少?
(3)如果售价为500元时,日销量为多少?
(四)回顾小结:
总结本节所学的知识,从表格中获取信息;
用表格表示变量之间的关系;
对变化趋势进行预测。
4.2用关系式表示的变量间的关系
1、经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。
2、能根据具体情景,用关系式表示某些变量之间的关系。
3、能根据关系式求值,初步体会自变量和因变量的数值对应关系。
1、找问题中的自变量和因变量。
2、根据关系式找自变量和因变量之间的对应关系。
根据关系式找自变量和因变量之间的对应关系。
(一)、预习书:
P100~P101
确定关系式的步骤?
1、会议厅共有30排座位,第一排有20个座位,后排每排比前一排多一个座位.
(1)你知道第九排有多少个座位吗?
第26排呢?
(2)每排的座位数y可用排数x来表示吗?
(3)可不可能某一排的座位数是52?
1、通过表格可表示两个变量之间的关系,本节中利用_______也可表示两个变量之间的关系.
2、确定关系式的步骤:
先找出题目中关于________与________的相等关系,再用________的代数式表示________
3、半径为R的圆面积S=________,当R=3时,S=________
方法小结:
1、涉及到图形的面积或体积时,写关系式的关键是利用面积或体积公式写出等式;
2、一定要将表示因变量的字母单独写在等号的左边;
3、已知一个变量的值求另一个变量的值时,一定要分清已知的是自变量还是因变量,千万不要代错了.
B
例1、如图,底边BC上的高是6厘米,当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.
(1)在这个变化过程中,自变量、因变量各是什么?
x
(2)如果三角形的底边长为x(厘米),那么三角形的面积y(厘米)可以表示为_________
(3)当底边长从12厘米变化到3厘米时,三角形的面积从____厘米变化到____厘米
变式1、如图,已知梯形的上底为x,下底为8,高为4.
(1)求梯形面积y与x的关系;
(2)用表格表示,当x从3到7(每次增加1)时,y的相应值;
(3)当x每增加1时,y如何变化?
(4)当y=50时,x为多少?
(5)当x=0时,y等于多少?
此时它表示的是什么?
例2、将若干张长为20cm、宽为10cm的长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为2cm.
(1)求4张白纸粘合后的总长度;
(2)设x张白纸粘合后的总长度为ycm,写出y与x之间的关系式;
(3)并求当x=20时,y的值
变式2、声音在空气中传播的速度y(米/秒)与气温之间有如下关系:
(1)在这一变化过程中,自变量是________、因变量是________;
(2)当气温时,声音速度y=________米/秒;
(3)当气温时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放烟花所在地约相距________米;
(三)拓展
P
1、如图,在中,已知,边AC=4cm,BC=5cm,点P为CB边上一动点,当点P沿CB从点C向点B运动时,的面积发生了变化.
(1)在这个变化过程中,自变量和因变量各是什么?
(2)如果设CP长为,的面积为,则y与x的关系可表示为__________;
(3)当点P从点D(点D为BC的中点)运动到点B时,则的面积从______变到______
自变量和因变量之间的关系;
根据关系式找出与自变量相应的因变量的数值。
4.3用图象表示的变量间关系
1、经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系。
2、结合具体情境,理解图象上的点所表示的意义。
3、能从图象中获取变量之间关系的信息,并能用语言进行描述。
结合具体情境,理解图象上的点所表示的意义。
并能从图象中获取变量之间关系的信息,
能从图象中获取变量之间关系的信息,并能用语言进行描述。
P103~P105
用图像表示变量之间的关系时,水平方向的数轴(横轴)上的点表示什么?
,竖直方向的数轴上的点表示什么?
1、如图,是某地某年月平均气温随时间变化的图像.请回答下列问题:
(1)二月份平均气温是______,十月份平均气温______;
(2)这一年中,月平均气温最高的是______月,温度大约是______;
(3)月平均最高气温与最低气温大约相差______
(4)月平均最高气温为的月份是______月,它可能是______季节;
(5)上述变化中,自变量是______,因变量是______;
(6)估计明年一月份的平均气温会低于吗?
1、图像是表示________之间关系的一种方法,它的特点是更________、更________地反映了因变量随自变量变化的情况.
2、用图像表示变量之间的关系时,通常用水平方向的数轴(横轴)上的点表示________,用竖直方向的数轴(纵轴)上的点表示________
例1、某山区今年6月中旬的天气情况是:
前5天小雨,后5天暴雨,那么反映该地区某河流水位变化的图像大致是()
ABCD
变式1、为节约用水,利民学校冲厕水箱经改造后,当水箱水满后就按一定的速度放掉水箱的一半水,随后立即按一定的速度注水,等水箱的水满后,又立即按一定的速度放掉水箱一
般的水,下面的图像可以刻画水箱的存水量v(立方米)与放水或注水时间t(分钟)之间的关系的是()
ABCD
例2、新成药业集团研究开发了一种新药,在实验药效时发现,如果儿童按规定剂量服用,那么2小时的时候血液中含药量最高,接着逐步衰减,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当儿童按规定剂量服药后:
(1)何时血液中含药量最高?
是多少微克?
(2)A点表示什么意义?
(3)每毫升血液中含药量为2微克以上时在治疗疾病时是有效的,那么这个有效期是多长?
(4)你建议该儿童首次服药后几小时再服药?
变式2、如图,是表示某天小明上学从家到学校时,离家的距离与时间的关系的图像。
(1)小明从家到学校有多远?
他一共用了多长时间到校?
(2)中途小明停下来子啊路边的商店买了一些练习本,图中那一段曲线表示这一过程?
(3)你能想象小明从离家到第4min时的情况吗?
1、王大爷带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价出售一些后,又降价出售,售出土豆的千克数x与他手中持有的钱数y(含备用零钱)的关系如图所示。
根据图像回答下列问题:
(1)王大爷自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,
这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?
2、如图中的折线ABC是甲地向乙地打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的关系的图像。
(1)通话1分钟,要付电话费多少元?
通话5分钟要付多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 变量 之间 关系