数学建模入门基本知识_精品文档Word文件下载.doc
- 文档编号:13883978
- 上传时间:2022-10-14
- 格式:DOC
- 页数:12
- 大小:80KB
数学建模入门基本知识_精品文档Word文件下载.doc
《数学建模入门基本知识_精品文档Word文件下载.doc》由会员分享,可在线阅读,更多相关《数学建模入门基本知识_精品文档Word文件下载.doc(12页珍藏版)》请在冰豆网上搜索。
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
4. 模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。
一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
5. 模型分析
对模型解答进行数学上的分析。
“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。
还要记住,不论那种情况都需进行误差分析,数据稳定性分析。
例题:
一个笼子里装有鸡和兔若干只,已知它们共有8个头和22只脚,问该笼子中有多少只鸡和多少只兔?
解:
设笼中有鸡x只,有兔y只,由已知条件有
x+y=8
2x+4y=22
求解如上二元方程后,得解x=5,y=3,即该笼子中有鸡5只,有兔3只。
将此结果代入原题进行验证可知所求结果正确。
根据例题可以得出如下的数学建模步骤:
1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外)
2)用字母表示要求的未知量
3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有2只脚,兔有4只脚)
4)求出数学式子的解答
5)验证所得结果的正确性
这就是数学建模的一般步骤
三、数模竞赛出题的指导思想
传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。
对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。
其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。
由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。
四、竞赛中的常见题型
赛题题型结构形式有三个基本组成部分:
1. 实际问题背景
涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。
一般都有一个比较确切的现实问题。
2.若干假设条件
有如下几种情况:
1)只有过程、规则等定性假设,无具体定量数据;
2)给出若干实测或统计数据;
3)给出若干参数或图形;
4)蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。
3.要求回答的问题
往往有几个问题,而且一般不是唯一答案。
一般包含以下两部分:
1)比较确定性的答案(基本答案);
2)更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果)。
五、提交一篇论文,基本内容和格式是什么?
提交一篇论文,基本内容和格式大致分三大部分:
1. 标题、摘要部分
题目——写出较确切的题目(不能只写A题、B题)。
摘要——200-300字,包括模型的主要特点、建模方法和主要结果。
内容较多时最好有个目录。
2. 中心部分
1)问题提出,问题分析。
2)模型建立:
①补充假设条件,明确概念,引进参数;
②模型形式(可有多个形式的模型);
③模型求解;
④模型性质;
3)计算方法设计和计算机实现。
4)结果分析与检验。
5)讨论——模型的优缺点,改进方向,推广新思想。
6)参考文献——也有特定格式。
3. 附录部分
计算程序,框图。
各种求解演算过程,计算中间结果。
各种图形、表格。
(论文有其严格的格式,这里只是一点挂一漏万的表述,详细的内容留有下期,敬请观看)
六、参加数学建模竞赛是不是需要学习很多知识?
没有必要很系统的学很多数学知识,这是时间和精力不允许的。
很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。
有时候,在论文中可能碰见一些没有学过的知识,怎么办?
现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。
具体说来,大概有以下这三个方面:
第一方面:
数学知识的应用能力
归结起来大体上有以下几类:
1)概率与数理统计
2)统筹与线轴规划
3)微分方程;
相关的数学基础知识包括
1、线性规划6、最优化理论
2、非线性规划7、管理运筹学
3、离散数学8、差分方程
4、概率统计9、层次分析
5、常微分方程
还有与计算机知识交叉的知识:
计算机模拟。
上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?
一个词“自学”,记得数模评卷的负责教师曾经说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。
第二方面:
计算机的运用能力
一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;
“Mathematica”软件的使用,最好还具备语言能力。
这些知识大部分都是学生自己利用课余时间学习的。
第三方面:
论文的写作能力
前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。
要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。
评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。
七、如何从建模例题中学习解题方法
在看例题的时候,要看例题是如何作的,即是如何切入,如何选择合理假设,如何分析建立的模型等。
数学建模方法常见有:
一、机理分析法从基本物理定律以及系统的结构数据来推导出模型。
1.比例分析法--建立变量之间函数关系的最基本最常用的方法。
2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3.逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4.常微分方程--解决两个变量之间的变化规律,关键是建立"
瞬时变化率"
的表达式。
5.偏微分方程--解决因变量与两个以上自变量之间的变化规律。
二、数据分析法从大量的观测数据利用统计方法建立数学模型
1.回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2.时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法
1.计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
①离散系统仿真--有一组状态变量。
②连续系统仿真--有解析表达式或系统结构图。
2.因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
八、小组中应该如何分工?
传统的标准答案是——数学,编程,写作。
其实分工不用那么明确,但有个前提是大家关系很好。
不然的话,很容易产生矛盾。
分工太明确了,会让人产生依赖思想,不愿去动脑子。
理想的分工是这样的:
数学建模竞赛小组中的每一个人,都能胜任其它人的工作,就算小组只剩下她(他)一个人,也照样能够搞定数学建模竞赛。
在竞赛中的分工,只是为了提高工作的效率,做出更好的结果。
具体的建议如下:
一定要有一个人脑子比较活,善于思考问题,这个人勉强归于数学方面吧;
一定要有一个人会编程序,能够实现一些算法。
另外需要有一个论文写的比较好,不过写不好也没关系,多看一看别人的优秀论文,多用几次Office就成了。
数学建模是一种科研工作,需要研究、讨论的团队思维模式。
要分析、争论、相互启发、集思广义。
每个同学都要积极参与,积极思维。
若三人之间配合不好,会降低效率,导致整个建模学习的失败。
———之论文写作
一、写好数模答卷的重要性
1.评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。
2.答卷是竞赛活动的成绩结晶的书面形式。
3.写好答卷的训练,是科技写作的一种基本训练。
二、答卷的基本内容,需要重视的问题
1.评阅原则
假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。
2.答卷的文章结构
1)摘要。
2)问题的叙述,问题的分析,背景的分析等。
3)模型的假设,符号说明(表)。
4)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。
5)模型的求解计算方法设计或选择;
算法设计或选择,算法思想依据,步骤及实现,计算框图;
所采用的软件名称;
引用或建立必要的数学命题和定理;
求解方案及流程。
6)结果表示、分析与检验,误差分析,模型检验。
7)模型评价,特点,优缺点,改进方法,推广。
8)参考文献。
9)附录、计算框图、详细图表。
3.要重视的问题
包括:
a.模型的数学归类(在数学上属于什么类型);
b.建模的思想(思路);
c.算法思想(求解思路);
d.建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);
e.主要结果(数值结果,结论;
回答题目所问的全部“问题”)。
▲注意表述:
准确、简明、条理清晰、合乎语法、字体工整漂亮;
打印最好,但要求符合文章格式。
务必认真校对。
2)问题重述。
3)模型假设。
根据全国组委会确定的评阅原则,基本假设的合理性很重要。
a.根据题目中条件作出假设
b.根据题目中要求作出假设
关键性假设不能缺;
假设要切合题意。
4)模型的建立。
a.基本模型:
ⅰ)首先要有数学模型:
数学公式、方案等;
ⅱ)基本模型,要求完整,正确,简明;
b.简化模型:
ⅰ)要明确说明简化思想,依据等;
ⅱ)简化后模型,尽可能完整给出;
c.模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 入门 基本知识 精品 文档