年厦门质检数学试题及答案Word文档格式.docx
- 文档编号:13881859
- 上传时间:2022-10-14
- 格式:DOCX
- 页数:16
- 大小:129.65KB
年厦门质检数学试题及答案Word文档格式.docx
《年厦门质检数学试题及答案Word文档格式.docx》由会员分享,可在线阅读,更多相关《年厦门质检数学试题及答案Word文档格式.docx(16页珍藏版)》请在冰豆网上搜索。
A.B是线段AC的中 B.B是线段AD的中点
C.C是线段BD的中点 D.C是线段AD的中点
8.把一些书分给几名同学,若________;
若每人分11本,则不够.依题意,设有x名同学可列不等式
9x+7<
11x,则横线的信息可以是
A.每人分7本,则可多分9个人 B.每人分7本,则剩余9本
C.每人分9本,则剩余7本 D.其中一个人分7本,则其他同学每人可分9本
9.已知a,b,c都是实数,则关于三个不等式:
a>
b,a>
b+c,c<0的逻辑关系的表述.下列正确的是
A.因为a>
b+c,所以a>
b,c>
0 B.因为a>
b+c,c<
0,所以a>
b
C.因为a>
b,a>
b+c,所以c<0 D.因为a>
b,c<0,所以a>b+c
10.我国古代数学家刘徽发展了“重差术”,用于测量不可到达的物体的高度,比如,通过下列步骤可测量山的高度PQ(如图3):
(1)测量者在水平线上的A处竖立一根竹竿,沿射线QA方向走到M处,测得山顶P、竹竿顶端B及M在一条直线上;
(2)将该竹竿竖立在射线QA上的C处,沿原方向继续走到N处,测得山顶P、竹竿顶端D及N在一条直线上;
(3)设竹竿与AM、CN的长分别为l、a1、a2,可得公式:
PQ=+l.
则上述公式中,d表示的是
A.QA的长 B.AC的长C.MN的长 D.QC的长
二、填空题(共24分)
11.分解因式:
________.
12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的概率是________.
13.如图4,已知AB是⊙O的直径,C,D是圆上两点,∠CDB=45°
AC=1,则AB的长为________.
14.A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg.A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等.设B型机器人每小时搬运xkg化工原料,依题意,可列方程________________.
15.已知,计算:
=__________.
16.在△ABC中,AB=AC.将△ABC沿∠B的平分线折叠,使点A落在BC边上的点D处,设折痕交AC边于点E,继续沿直线DE折叠,若折叠后,BE与线段DC相交,且交点不与点C重合,则∠BAC的度数应满足的条件是__________.
三、解答题(共86分)
17.(8分)解方程:
18.(8分)如图5,直线EF分别与AB、CD交于点A、C,若AB∥CD,
CB平分∠ACD,∠EAB=72°
求∠ABC的度数.
19.(8分)如图6,在平面直角坐标系中,直线l经过第一、二、四象限,点A(0,m)在l上.
(1)在图中标出点A;
(2)若m=2,且过点(-3,4),求直线l的表达式.
20.(8分)如图7,在□ABCD中,E是BC延长线上的一点,
且DE=AB,连接AE、BD,证明AE=BD.
21.(8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、
城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅.2017年该市的有关数据如下表所示:
项目
交通工具
使用燃料
维修
市内公共
交通
城市间
占交通消费的比例
22%
13%
5%
P
26%
相对上一年
价格的涨幅
1.5%
m%
2%
0.5%
1%
(1)求p的值;
(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.
22.(10分)如图8,在矩形ABCD中,对角线AC、BD交于点O.
(1)若AB=2,AO=,求BC的长;
(2)若∠DBC=30°
,CE=CD,∠DCE<90°
OE=BD,
求∠DCE的度数.
23.(11分)已知点A,B在反比例函数 (x>
0)的图象上,且横坐标分别为m、n,过点A向y轴
作垂线段,过点B向x轴作垂线段,两条垂线段交于点C.过点A、B分别作AD⊥x轴于D,BE⊥y
轴于E.
(1)若m=6,n=1,求点C的坐标;
(2)若,当点C在直线DE上时,求n的值.
24.(11分)已知AB=8,直线l与AB平行,且距离为4.P是l上的动点,过点P作PC⊥AB交线段AB
于点C,点C不与A、B重合.过A、C、P三点的圆与直线PB交于点D.
(1)如图9,当D为PB的中点时,求AP的长;
(2)如图10,圆的一条直径垂直AB于点E,且与AD交于点M.当ME的长度最大时,判断直线PB是否与该圆相切?
并说明理由.
25.(14分)已知二次函数,.
(1)当时,
①若二次函数图象经过点(1,-4),(-1,0),求a,b的值;
②若,对于任意不为零的实数a,是否存在一条直线y=kx+p(k≠0),始终与二次函数图象交于不同的两点?
若存在,求出该直线的表达式;
若不存在,请说明理由;
(2)若点A(-1,t),B(m,)(m>0,n>
0)是函数图象上的两点,且S△AOB=,
当-1≤x≤m时,点A是该函数图象的最高点,求a的取值范围.
参考答案
说明:
解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.
一、选择题(本大题共10小题,每小题4分,共40分)
题号
1
2
3
4
5
6
7
8
9
10
选项
A
A
B
D
C
C
二、填空题(本大题共6小题,每题4分,共24分)
11.m(m-2). 12.. 13.. 14.=.
15.4001. 16.100°
<
∠BAC<
180°
.
三、解答题(本大题有9小题,共86分)
17.(本题满分8分)
解:
2x-2+1=x.…………………………4分
2x-x=2-1.…………………………6分
x=1.…………………………8分
18.(本题满分8分)
解法一:
如图1∵AB∥CD,
∴∠ACD=∠EAB=72°
.…………………………3分
∵ CB平分∠ACD,
∴∠BCD=∠ACD=36°
.…………………………5分
∵ AB∥CD,
∴∠ABC=∠BCD=36°
.…………………………8分
解法二:
如图1∵ AB∥CD,
∴∠ABC=∠BCD.…………………………3分
∴∠ACB=∠BCD. …………………………5分
∴∠ABC=∠ACB.
∵ ∠ABC+∠ACB=∠EAB,
∴∠ABC=∠EAB=36°
. …………………………8分
19.(本题满分8分)
(1)(本小题满分3分)如图2;
…………………………3分
(2)(本小题满分5分)
解:
设直线l的表达式为y=kx+b(k≠0),…………………………4分
由m=2得点A(0,2),
把(0,2),(-3,4)分别代入表达式,得
可得…………………………7分
所以直线l的表达式为y=-x+2. …………………………8分
20.(本题满分8分)
证明:
如图3∵ 四边形ABCD是平行四边形,
∴AB∥DC,AB=DC.…………………………2分
∵DE=AB,
∴DE=DC.
∴ ∠DCE=∠DEC.…………………………4分
∵AB∥DC,
∴ ∠ABC=∠DCE.…………………………5分
∴ ∠ABC=∠DEC. …………………………6分
又∵AB=DE,BE=EB,
∴△ABE≌△DEB.…………………………7分
∴AE=BD. …………………………8分
21.(本题满分8分)
(1)(本小题满分3分)
p=1-(22%+13%+5%+26%)…………………………2分
=34%. …………………………3分
(2)(本小题满分5分)
由题意得
=1.25%. …………………7分
解得m=3. …………………………8分
22.(本题满分10分)
(1)(本小题满分4分)
如图4∵四边形ABCD是矩形,
∴∠ABC=90°
AC=2AO=2.………………………2分
∵ 在Rt△ACB中,
∴BC= ………………………3分
=4.………………………4分
(2)(本小题满分6分)
如图4∵ 四边形ABCD是矩形,
∴∠DCB=90°
BD=2OD,AC=2OC,AC=BD.
∴OD=OC=BD.
∵∠DBC=30°
,
∴ 在Rt△BCD中,∠BDC=90°
-30°
=60°
CD=BD.
∵CE=CD,
∴CE=BD.………………………6分
∵ OE=BD,
∴ 在△OCE中,OE2=BD2.
又∵ OC2+CE2=BD2+BD2=BD2,
∴OC2+CE2=OE2.
∴ ∠OCE=90°
.…………………8分
∵ OD=OC,
∴ ∠OCD=∠ODC=60°
.…………………9分
∴∠DCE=∠OCE-∠OCD=30°
.…………………10分
23.(本题满分11分)
(1)(本小题满分4分)
因为当m=6时,y==1,…………………2分
又因为n=1,
所以C(1,1).…………………4分
(2)(本小题满分7分)
如图5,因为点A,B的横坐标分别为m,n,
所以A(m,),B(n,)(m>
0,n>
0),
所以D(m,0),E(0,),C(n,).………………………6分
设直线DE的表达式为y=kx+b,(k≠0),
把D(m,0),E(0,)分别代入表达式,可得y=-x+.………………………7分
因为点C在直线DE上,
所以把C(n,)代入y=-x+,化简得m=2n.
把m=2n代入m(n-2)=3,得2n(n-2)=3.,………………………9分
解得n=.………………………10分
因为n>0,
所以n=.………………………11分
24.(本题满分11分)
(1)(本小题满分5分)
解法一:
如图6,∵ PC ⊥AB,
∴ ∠ACP=90°
∴AP是直径.………………
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 厦门 质检 数学试题 答案