江西省重点中学盟校届高三数学下学期第二次联考 理Word格式.docx
- 文档编号:13879573
- 上传时间:2022-10-14
- 格式:DOCX
- 页数:12
- 大小:306.29KB
江西省重点中学盟校届高三数学下学期第二次联考 理Word格式.docx
《江西省重点中学盟校届高三数学下学期第二次联考 理Word格式.docx》由会员分享,可在线阅读,更多相关《江西省重点中学盟校届高三数学下学期第二次联考 理Word格式.docx(12页珍藏版)》请在冰豆网上搜索。
则此多面体的体积是()
A.cm3
俯视图
B.cm3
C.cm3
D.cm3
数学试卷第1页(共2页)理科
7.2022年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码。
公司规定:
凡卡号的后四位带数字“6”或“8”的一律作为“金兔卡”,享受一定优惠政策,则这组号码中“金兔卡”的个数为()
A.2000B.4096C.5904D.8320
8.对于使恒成立的所有常数中,我们把的最小值叫做的上确界。
若,且,则的上确界为()
9.若函数的图象与轴所围成的封闭图形的面积为,则的展开式中常数项为
ABCD
123…202220222022
35…40194021
8…8040
…
M
10.给出若干数字按下图所示排成倒三角形,其中第一行各数依次是1,2,3,…,2022,从第二行起每个数分别等于上一行左、右两数之和,最后一行只有一个数M,则这个数M是()
A.
B.
C.
D.
第II卷
二、填空题本大题共5个小题,每小题5分,共25分
11.已知等差数列中,是函数的两个零点,则
开始
输入
输出
结束
是
否
第(13)题图
12.设,若是的充分
不必要条件,则的取值范围是
13.如图:
若,,,
则输出的数为
14.给出以下三个命题:
数学试卷第2页(共2页)理科
(A)已知是椭圆上的一点,、是左、右两个焦点,若的内切圆的半径为,则此椭圆的离心率;
(B)过椭圆上的任意一动点,引圆的两条切线、,切点分别为、,若,则椭圆的离心率的取值范围为;
(C)已知、,是直线上一动点,则以、为焦点且过点的双曲线的离心率的取值范围是。
其中真命题的代号是(写出所有真命题的代号)。
15.选作题(请在下列2小题中选做一题,全做的只计算第(A)题得分)
(A)在极坐标系中,曲线,曲线,若曲线C1与C2交于两点,则线段的长度为。
(B)若不等式恒成立,则的取值范围为。
三、解答题(共75分)
16.(本小题满分12分)
已知数列的前项和满足为常数,且,数列是等比数列,且
(1)求的通项公式;
(2)求的值
17.(本小题满分12分)
已知中,角的对边分别为,且的面积,
(1)求的取值范围;
(2)求函数的最值
18.(本小题满分12分)
某汽车配件厂生产A、B两种型号的产品,A型产品的一等品率为,二等品率为;
B型产品的一等品率为,二等品率为。
生产1件A型产品,若是一等品则获得4万元利润,若是二等品则亏损1万元;
生产1件B型产品,若是一等品则获得6万元利润,若是二等品则亏损2万元。
设生产各件产品相互独立。
(1)求生产4件A型产品所获得的利润不少于10万元的概率;
(2)记单位:
万元为生产1件A型产品和1件B型产品可获得的利润,求的分布列及期望值
19.(本小题满分12分)
如图,直三棱柱中,,
为的中点,
(1)求证:
20.(本小题满分13分)
已知函数
(1)当且,时,试用含的式子表示,并讨论的单调区间;
(2)若有零点,,且对函数定义域内一切满足的实数有
①求的表达式;
②当时,求函数的图象与函数的图象的交点坐标
21.(本小题满分14分)
已知抛物线和直线没有公共点(其中、为常数),动点是直线上的任意一点,过点引抛物线的两条切线,切点分别为、,且直线恒过点
(1)求抛物线的方程;
(2)已知点为原点,连结交抛物线于、两点,证明:
江西省重点中学盟校2022届第二次联考数学试卷(理)参考答案
一、选择题
题号
2
3
4
5
6
7
8
9
10
答案
B
D
B
C
A
第10题提示:
第一行公差为1;
第二行公差为2;
……;
第2022行公差为22022,第2022行只有,发现规律,得。
或从第一行为1,2,3及1,2,3,4,5的两个“小三角形”结合选项归纳得结果为及猜一般为。
二、填空题
11、
12、
13、
14、C提示:
(1)设是的角平分线与轴的交点,则:
(为内心),,∴
∵∴
(或以内心为顶点,面积分割,用定义可得结果)
(2)由得,∵
∴,∴,∴
(3)在轴上时,双曲线上点到左焦点距离最小,∴,∴,∴
又,∴
15、(A)(B)
三、解答题
16.解:
(1)时,
时,,得
∴………………4分
(2)时,
时,
时,…………8分
∴∴…………12分
17.解:
(1)………………2分
则………………4分
………………6分
2………………9分
无最小值,时取得最大值为………………12分
18.解:
(1)由题意得一等品件数为3或4…………2分
即生产4件A型产品所获得的利润不少于10万元的概率为………………5分
(2)由题意的所有可能取值为且
;
………………9分
所以,的分布列为
X
-3
P
………………12分
19.
……4分
……8分
在中,
∴二面角的正切值为
则,,,
∴,
设平面的法向量为,
由及
得,取
∴
又平面的一个法向量
∴
∵所求二面角的平面角为锐角
……12分
20.解:
由,故
时由得的单调增区间是,
由得单调减区间是
同理时,的单调增区间,,单调减区间为…………5分
(2)①由
(1)及(i)
又由有知的零点在内,设,
则,结合(i)解得,………………8分
∴………………9分
②又设,先求与轴在的交点
∵,由得
故,在单调递增
又,故与轴有唯一交点
即与的图象在区间上的唯一交点坐标为为所求…………13分
21.解:
(1)如图,设,
由,得∴的斜率为
的方程为同理得
设代入上式得,
即,满足方程
故的方程为………………4分
上式可化为,过交点
∵过交点,∴,
∴的方程为………………6分
(2)要证,即证
设,
则……(Ⅰ)
∵,
∴直线方程为,
与联立化简
∴……①……②…………10分
把①②代入(Ⅰ)式中,则分子
…………(Ⅱ)
又点在直线上,∴代入Ⅱ中得:
∴
故得证………………14分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江西省重点中学盟校届高三数学下学期第二次联考 江西省 重点中学 盟校届高三 数学 下学 第二次 联考