浙教版数学八年级下册6.3《反比例函数的应用》公开课课件PPT资料.pptx
- 文档编号:13863376
- 上传时间:2022-10-14
- 格式:PPTX
- 页数:26
- 大小:1.30MB
浙教版数学八年级下册6.3《反比例函数的应用》公开课课件PPT资料.pptx
《浙教版数学八年级下册6.3《反比例函数的应用》公开课课件PPT资料.pptx》由会员分享,可在线阅读,更多相关《浙教版数学八年级下册6.3《反比例函数的应用》公开课课件PPT资料.pptx(26页珍藏版)》请在冰豆网上搜索。
,解:
【例1】设ABC中BC边的长为x(cm),BC上的高AD为y(cm)。
已知y关于x的函数图象过点(3,4),
(2)画出函数的图象。
并利用图象,求当2x8时y的取值范围。
k=120,又因为x0,所以图形在第一象限。
用描点法画出函数的图象如图当x=2时,y=6;
当x=8时,y=,所以得y6,探究活动:
如果例1中BC=6cm。
你能作出ABC吗?
能作出多少个?
请试一试。
如果要求ABC是等腰三角形呢?
1、生产某种工艺品,设每名工人一天大约能做x个。
若每天要生产这种工艺品60个,则需工人y名。
(1)求y关于x的函数解析式;
(2)若一名工人每天能做的工艺品个数最少6个,最多8个。
估计每天需要做这种工艺品的工人多少人?
练一练,2、一批相同型号的衬衣单价在每件60元至每件80元之间,用720元钱至少可买多少件衬衣?
至多可买多少件衬衣?
请用反比例函数的性质或图象说明理由。
(1)请根据表中的数据求出压强p(kPa)关于体积V(mL)的函数关系式;
例2、如图,在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后汽缸内气体的体积和气体对汽缸壁所产生的压强。
请根据表中的数据求出压强p(kPa)关于体积V(ml)的函数关系式;
解
(1)根据函数图象,可选择反比例函数进行尝试,设解析式为p=k/V(k0),把点(60,100)代入,得:
将点(70,86),(80,75),(90,67),(100,60)分别代入验证,均符合,k=6000,即:
压强p关于体积V的函数解析式为,当压力表读出的压强为72kPa时,汽缸内气体的体积压缩到多少ml?
答:
当压力表读出的压强为72kPa时,汽缸内气体的体积压缩到约83ml。
有解得,例2、如图,在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后汽缸内气体的体积和气体对汽缸壁所产生的压强。
因为函数解析式为,课内练习:
1、例2中,若压强80p90,请估汽缸内气体体积的取值范围,并说明理由。
k=6000,在每个象限中,p随V的增大而减小,当p=80,90时,V分别为75,,当80p90时,V75,本例反映了一种数学的建模方式,具体过程可概括成:
由实验获得数据用描点法画出图象根据图象和数据判断或估计函数的类别用待定系数法求出函数关系式用实验数据验证-应用函数表达式解决问题。
知识背景,3、制作一种产品,需先将材料加热达到60后,再进行操作。
设该材料温度为y,从加热开始计算的时间为x(分钟)。
据了解,该材料加热时,温度y与时间x成一次函数关系;
停止加热进行操作时,温度y与时间x成反比例关系(如图)。
已知该材料在操作加工前的温度为15,加热5分钟后温度达到60。
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15时,须停止操作,那么从开始加热到停止操作,共经历了多少时间;
探索活动:
某一农家计划利用已有的一堵长为8m的墙,围成一个面积为12m2的园子现有可用的篱笆总长为10.5m.,
(1)你能否给出一种围法?
(2)要使园子的长,宽都是整米数,问共有几种围法?
问题:
圆锥的体积(表示圆锥的底面积,表示圆锥的高)某工厂要制作一系列圆锥模型,要求体积保持不变测得其中一个已做成圆锥模型的底面半径为cm,高为10cm.,
(1)求S关于h的函数解析式与自变量h的取值范围,
(2)求当高限定为50h100时,底面积的取值范围,提高练习2,如图,动点P在反比例函数图像的一个分支上,过点P作PAx轴于点A、PBy轴于点B,当点P移动时,OAB的面积大小是否变化?
为什么?
x,y,O,A,B,P,反比例函数的应用在应用反比例函数解决问题时,一定要注意以下几点:
要注意自变量取值范围符合实际意义确定反比例函数之前一定要考察两个变量与定值之间的关系若k未知时应首先由已知条件求出k值求“至少,最多”时可根据函数性质得到,课堂小结,补充练习,1、反比例函数与正比例函数在同一坐标系中的图象不可能的是(),(A),(B),(C),(D),D,
(1)一次函数的解析式;
(2)求AOB的面积;
例2:
已知一次函数的图象与反比例函数的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2。
拓展延伸:
例5、有一个RtABC,A=900,B=600,AB=1,将它放在直角坐标系中,使斜边BC在x轴上,直角顶点A在反比例函数的图象上,且点A在第一象限.求:
点C的坐标,例5、A=900,B=600,AB=1,斜边BC在x轴上,点A在函数图象上,且点A在第一象限.求:
点C的坐标,2,2,A,例5、A=900,B=600,AB=1,斜边BC在x轴上,点A在函数图象上.求:
点C的坐标,o,例5、A=900,B=600,AB=1,斜边BC在坐标轴上,点A在函数图象上.求:
点C的坐标,C6,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例函数的应用 浙教版 数学 年级 下册 6.3 反比例 函数 应用 公开 课件