北京宣武区学年第一学期期末质量检测高三数学文Word文件下载.docx
- 文档编号:13852531
- 上传时间:2022-10-14
- 格式:DOCX
- 页数:12
- 大小:286.01KB
北京宣武区学年第一学期期末质量检测高三数学文Word文件下载.docx
《北京宣武区学年第一学期期末质量检测高三数学文Word文件下载.docx》由会员分享,可在线阅读,更多相关《北京宣武区学年第一学期期末质量检测高三数学文Word文件下载.docx(12页珍藏版)》请在冰豆网上搜索。
D.4
第H卷(非选择题共110分)
二、填空题(本大题共6个小题,每小题5分,共30分;
把答案填在相应的位置上)。
9.若双曲线x2上1的离心率为n,则n:
设i为虚数单位,复数1in的运算结果
15
为.
10.已知非零向量a,b满足:
|a2b,且bab,则向量a与向量b的夹角=.
11.长方体ABCDA1B1C1D1满足:
AB2BC2CC121,则其外接球的表面积为
11=2
n=4
三、解答题(本大题共6个小题,共80分;
解答应写出文字说明,证明过程或演算步骤)
15.(本小题共13分)
已知ABC的三个内角A,B,C所对的边分别为a,b,c,A是锐角,且3b2asinB.
(I)求A的度数;
(n)若a7,ABC的面积为10.一3,求b2c2的值.
如图是正三棱柱ABCAB1C1,AA3,AB2,若N为棱AB中点.
(I)求证:
ACi〃平面CNBi;
(n)求四棱锥C1ANB1A1的体积.
某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式
分成五组,第一组13,14,第二组14,15……第五组17,18如图是按上述分组方法得到的频率分布直方图•
(I)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数。
(II)设m,n表示该班两个学生的百米测试成绩,已知m,n13,1417,18求事件“mn2”的
概率。
已知二次函数g(x)的图象经过坐标原点,且满足g(x1)g(x)2x1,设函数
f(x)m[g(x1)1]Inx,其中m为常数且m0.
(I)求函数g(x)的解析式;
(II)当2m0时,判断函数f(x)的单调性并且说明理由.
19.(本小题共14分)
已知椭圆E:
22
xy—
—21(a,b0)的焦点坐标为Fi(2,0),点M(2,-2)在椭圆E上.
ab
(I)求椭圆
E的方程;
n)设Q(1,0),过Q点引直线I与椭圆E交于A,B两点,求线段AB中点P的轨迹方程;
20.(本小题共14分)
J5已知函数f(x):
m为正整数.
5x
([)求f
(1)f(0)和f(x)f(1x)的值;
(n)若数列{a.}的通项公式为anf(-)(n1,2,,m),求数列{an}的前m项和Sm;
m
(川)设数列{bn}满足:
b1-,bn1bn2bn,设Tn---,若(n)
2b11b21bn1
中的Sm满足对任意不小于3的正整数n,4Sm777Tn、5恒成立,试求m的最大值.
北京市宣武区2009〜2010学年度第一学期期末质量检测
高三数学(文)参考答案及评分标准2010.1
一、选择题(本大题共有8个小题,每小题5分,共40分;
在每个小题给出的四个选项中有且仅有一个是符合题目要求的)
题号
1
3
4
5
6
7
8
答案
C
A
D
B
、填空题:
本大题共有6个小题,每小题5分,共30分;
请把答案写在相应的位置上
9
10
11
12
13
14
4,4
2亦
r3,1,3
2008
15,2009
三、解答题:
本大题共有6个小题,共80分;
解答应写出文字说明,证明过程或演算步骤
15.(本题满分13分)
解:
(1)•••.3b2asinB,二由正弦定理知:
.、3sinB2sinAsinB,
A是锐角,•••A的度数=60o.
又NO平面NB1C,AC1平面NB1C,
•-AC1//平面NB1C;
(H)•/ANB1A1是直角梯形,AN1,A1B12,AA3,•四边形ANB1A1面积为9,
3!
~3•••CN平面ANB1A1,•••四棱锥CANB1A1的体积为•13分
17.(本题满分13分)
(1)根据直方图可知成绩在14,16内的人数为:
500.18500.3828人;
5分
(H)成绩在13,14的人数有:
500.042人,设为a,b.
成绩在17,18的人数有:
500.063人,设为A,B,C.
m,n13,14时有ab一种情况.m,n17,18时有AB,AC,BC三种情况.
m,n分别在13,14和17,18时有aA,aB,aC,bA,bB,bC六种情况.
即:
ax2(2ab)xabax2(b2)x1
2mx22mx1
即f'
(x)0在(0,)上恒成立.
13分
•••当2m0时,函数f(x)在定义域(0,)上单调递减.
19.(本题满分14分)
(I):
椭圆
E:
y21(a,b>
0)经过M(-2,2),一个焦点坐标为F1(2,0),
b
a
b2
,椭圆E的方程为—-L
84
(n)当直线
l的斜率存在时,设直线I与椭圆
E的两个交点为A(xi,yi),B(X2,y2),相交
所得弦的中点P(x,y)82
X2
y2
①-②得,(X1X2)(X1X2)
(力y2)(y1y?
)0,
•••弦AB的斜率k上一y2
4x1x2
x1x2
8yi
"
0)・,
•••代B,P,Q四点共线,•kAB
九(y0且X1),
经检验(0,0),(1,0)符合条件,
•••线段AB中点P的轨迹方程是
x22
10分
(川)当OO的切线斜率存在时,设O
O的切线方程为
ykxm,
y
由x!
kx
y_
得(12k2)x2
4kmx2m8
0,
X3X4
设C(X3,y3),D(X4,y4),则
X3X4
4km
12k22m28
2k2
•/OC
OD,•X3X4yy0,即
2m28
12k2
m28k2
2^
8k280,即k2如8
•••直线
ykxm为OO的一条切线,•圆的半径
1k2
即r2
m2
m28
3m283
1-
经检验,当O
O的切线斜率不存在时也成立••••
r兰
20.(本题满分
14分)
(I)
f
(1)
f(0)
551
5「
f(x)
f°
x)=5x&
真=宾
51x55x.5
55x
555x
11)由(I)得
k
f(-)
f(1
-)
1(1km1),
即f(k)
f(mk)
1,
ak
amk1,
由Sma1
a2a3
am1
am,
•…①
得Sm
②
由①+②,得2Sm
(m1)1
2am,
15.5
•Sm(m
1}2
(m
1)•
24
(川)-b1,
bn1
b2bn
bn
(bn1),
•••对任意的
nN*
bn0.
1^111
即
bn1bn(bn
1)bn
1bn1bnbn
am
1am2
a1am
bn1bn
•-Tn关于n递增.
bn1bn,数列{bn}是单调递增数列
3,且nN时,TnT3.
3332121
Qb33(31)荷b4亦
777
256
b4
•••4Sm777T3、.5,
•••m650.5.而m为正整数,
•m的最大值为650.14分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京 宣武区 学年 第一 学期 期末 质量 检测 数学