九年级数学上册第章一元二次方程教案新人教版Word格式文档下载.docx
- 文档编号:13799823
- 上传时间:2022-10-13
- 格式:DOCX
- 页数:57
- 大小:77.77KB
九年级数学上册第章一元二次方程教案新人教版Word格式文档下载.docx
《九年级数学上册第章一元二次方程教案新人教版Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《九年级数学上册第章一元二次方程教案新人教版Word格式文档下载.docx(57页珍藏版)》请在冰豆网上搜索。
(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:
b2-4ac>
0,b2-4ac=0,b2-4ac<
0.
(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.
(6)提出问题、分析问题,建立一元二次方程的数学模型,并用该模型解决实际问题.
3.情感、态度与价值观
经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;
经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;
经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.
教学重点
1.一元二次方程及其它有关的概念.
2.用配方法、公式法、因式分解法降次──解一元二次方程.
3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.
教学难点
1.一元二次方程配方法解题.
2.用公式法解一元二次方程时的讨论.
3.建立一元二次方程实际问题的数学模型;
方程解与实际问题解的区别.
教学关键
1.分析实际问题如何建立一元二次方程的数学模型.
2.用配方法解一元二次方程的步骤.
3.解一元二次方程公式法的推导.
课时划分
本单元教学时间约需16课时,具体分配如下:
22.1一元二次方程2课时
22.2降次──解一元二次方程7课时
22.3实际问题与一元二次方程5课时
发现一元二次方程根与系数的关系2课时
第1课时22.1一元二次方程
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
了解一元二次方程的概念;
一般式ax2+bx+c=0(a≠0)及其派生的概念;
应用一元二次方程概念解决一些简单题目.
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.
重难点关键
1.重点:
一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:
通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.
教学过程
一、复习引入
学生活动:
列方程.
问题
(1)古算趣题:
“执竿进屋”
笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x尺,那么,这个门的宽为_______尺,长为_______尺,
根据题意,得________.
整理、化简,得:
__________.
问题
(2)如图,如果,那么点C叫做线段AB的黄金分割点.
如果假设AB=1,AC=x,那么BC=________,根据题意,得:
________.
整理得:
_________.
问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:
_______.
整理,得:
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?
还是与多项式一样只有式子?
老师点评:
(1)都只含一个未知数x;
(2)它们的最高次数都是2次的;
(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;
bx是一次项,b是一次项系数;
c是常数项.
例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:
一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.
解:
略
注意:
二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.
例2.(学生活动:
请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;
一次项、一次项系数;
常数项.
分析:
通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:
三、巩固练习
教材P32练习1、2
补充练习:
判断下列方程是否为一元二次方程?
(1)3x+2=5y-3
(2)x2=4(3)3x2-=0(4)x2-4=(x+2)2(5)ax2+bx+c=0
四、应用拓展
例3.求证:
关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.
证明:
m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>
0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
•练习:
1.方程(2a—4)x2—2bx+a=0,在什么条件下此方程为一元二次方程?
在什么条件下此方程为一元一次方程?
2.当m为何值时,方程(m+1)x4m-4+27mx+5=0是关于的一元二次方程
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;
(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
1.教材P34习题22.11
(2)(4)(6)、2.
2.选用作业设计.补充:
若x2-2xm-1+3=0是关于x的一元二次方程,求m的值
作业设计
一、选择题
1.在下列方程中,一元二次方程的个数是().
①3x2+7=0②ax2+bx+c=0③(x-2)(x+5)=x2-1④3x2-=0
A.1个B.2个C.3个D.4个
2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为().
A.2,3,-6B.2,-3,18C.2,-3,6D.2,3,6
3.px2-3x+p2-q=0是关于x的一元二次方程,则().
A.p=1B.p>
0C.p≠0D.p为任意实数
二、填空题
1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.
2.一元二次方程的一般形式是__________.
3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.
三、综合提高题
1.a满足什么条件时,关于x的方程a(x2+x)=x-(x+1)是一元二次方程?
2.关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?
为什么?
3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,是这样做的:
设铁片的长为x,列出的方程为x(x-3)=1,整理得:
x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:
第一步:
x
1
2
3
4
x2-3x-1
-3
所以,________<
x<
__________
第二步:
x
3.1
3.2
3.3
3.4
-0.96
-0.36
(1)请你帮小明填完空格,完成他未完成的部分;
(2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.
课后反思
第2课时22.1一元二次方程
1.一元二次方程根的概念;
2.根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.
了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.
提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;
由解给出根的概念;
再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.
1.重点:
判定一个数是否是方程的根;
2.难点关键:
由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.
教学过程
一、复习引入
请同学独立完成下列问题.
问题1.前面有关“执竿进屋”的问题中,我们列得方程x2-8x+20=0
列表:
5
6
7
8
9
10
11
…
x2-8x+20
问题2.前面有关长方形的面积的问题中,我们列得方程x2+7x-44=0即x2+7x=44
x2+7x
老师点评(略)
提问:
(1)问题1中一元二次方程的解是多少?
问题2中一元二次方程的解是多少?
(2)如果抛开实际问题,问题2中还有其它解吗?
(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 上册 一元 二次方程 教案 新人