小学毕业班六年级全册数学应用题解决问题常见例题分析详解Word格式.docx
- 文档编号:13781328
- 上传时间:2022-10-13
- 格式:DOCX
- 页数:16
- 大小:28.53KB
小学毕业班六年级全册数学应用题解决问题常见例题分析详解Word格式.docx
《小学毕业班六年级全册数学应用题解决问题常见例题分析详解Word格式.docx》由会员分享,可在线阅读,更多相关《小学毕业班六年级全册数学应用题解决问题常见例题分析详解Word格式.docx(16页珍藏版)》请在冰豆网上搜索。
12÷
(120-75)=900÷
45=20(天)
答:
好马20天能追上劣马。
例2、小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。
小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。
又知小明跑200米用40秒,则跑500米用[40×
(500÷
200)]秒,
所以小亮的速度是(500-200)÷
[40×
200)]=300÷
100=3(米)
小亮的速度是每秒3米。
例3、我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。
已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×
(22-6)]千米,甲乙两地相距60千米。
由此推知
追及时间=[10×
(22-6)+60]÷
(30-10)=220÷
20=11(小时)
解放军在11小时后可以追上敌人。
例4、一辆客车从甲站开往乙站,每小时行48千米;
一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
这道题可以由相遇问题转化为追及问题来解决。
从题中可知客车落后于货车(16×
2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为16×
2÷
(48-40)=4(小时)
所以两站间的距离为(48+40)×
4=352(千米)
列成综合算式(48+40)×
[16×
(48-40)]=88×
甲乙两站的距离是352千米。
例5、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校有多远?
要求距离,速度已知,所以关键是求出相遇时间。
从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×
2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,
那么,二人从家出走到相遇所用时间为180×
(90-60)=12(分钟)
家离学校的距离为90×
12-180=900(米)
家离学校有900米远。
例6、孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。
后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。
求孙亮跑步的速度。
手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。
如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。
所以步行1千米所用时间为1÷
[9-(10-5)]=0.25(小时)=15(分钟)
跑步1千米所用时间为15-[9-(10-5)]=11(分钟)
跑步速度为每小时1÷
11/60=5.5(千米)
孙亮跑步速度为每小时5.5千米。
2.工程问题
工程问题主要研究工作量、工作效率和工作时间三者之间的关系。
这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。
【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
工作量=工作效率×
工作时间
工作时间=工作量÷
工作效率
工作时间=总工作量÷
(甲工作效率+乙工作效率)
【解题思路和方法】变通后可以利用上述数量关系的公式。
例1、一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?
题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。
由于甲队独做需10天完成,那么每天完成这项工程的1/10;
乙队单独做需15天完成,每天完成这项工程的1/15;
两队合做,每天可以完成这项工程的(1/10+1/15)。
由此可以列出算式:
1÷
(1/10+1/15)=1÷
1/6=6(天)
两队合做需要6天完成。
例2、一批零件,甲独做6小时完成,乙独做8小时完成。
现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。
因为二人合做需要[1÷
(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以
(1)每小时甲比乙多做多少零件?
24÷
[1÷
(1/6+1/8)]=7(个)
(2)这批零件共有多少个?
7÷
(1/6-1/8)=168(个)
这批零件共有168个。
解二:
上面这道题还可以用另一种方法计算:
两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3
由此可知,甲比乙多完成总工作量的4-3/4+3=1/7
所以,这批零件共有24÷
1/7=168(个)
例3、一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。
现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
必须先求出各人每小时的工作效率。
如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是
60÷
12=560÷
10=660÷
15=4
因此余下的工作量由乙丙合做还需要
(60-5×
2)÷
(6+4)=5(小时)
还需要5小时才能完成。
例4、一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。
当打开4个进水管时,需要5小时才能注满水池;
当打开2个进水管时,需要15小时才能注满水池;
现在要用2小时将水池注满,至少要打开多少个进水管?
注(排)水问题是一类特殊的工程问题。
往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。
要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。
为此需要知道进水管、排水管的工作效率及总工作量(一池水)。
只要设某一个量为单位1,其余两个量便可由条件推出。
我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×
4×
5),2个进水管15小时注水量为(1×
2×
15),从而可知
每小时的排水量为(1×
15-1×
5)÷
(15-5)=1
即一个排水管与每个进水管的工作效率相同。
由此可知
一池水的总工作量为1×
5-1×
5=15
又因为在2小时内,每个进水管的注水量为1×
2,
所以,2小时内注满一池水
至少需要多少个进水管?
(15+1×
(1×
2)=8。
5≈9(个)
至少需要9个进水管。
3.公约数(公因数)公倍数的问题
需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。
【数量关系】绝大多数要用最大公约数、最小公倍数来解答。
【解题思路和方法】先确定题目中要用最大公约数或者最小公倍数,再求出答案。
最大公约数和最小公倍数的求法,最常用的是“短除法”。
例1、一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。
问正方形的边长是多少?
硬纸板的长和宽的最大公约数就是所求的边长。
60和56的最大公约数是4。
正方形的边长是4厘米。
例2、甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?
要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。
因为问至少要多少时间,所以应是36、30、48的最小公倍数。
36、30、48的最小公倍数是720。
至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。
例3、一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?
相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12。
所以,至少应植树(60+72+96+84)÷
12=26(棵)
至少要植26棵树。
例4、一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。
又知棋子总数在150到200之间,求棋子总数。
如果从总数中取出1个,余下的总数便是4、5、6的公倍数。
因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为
60×
3+1=181(个)
棋子的总数是181个。
4.行船问题
行船问题也就是与航行有关的问题。
解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;
水速是水流的速度,船只顺水航行的速度是船速与水速之和;
船只逆水航行的速度是船速与水速之差。
(顺水速度+逆水速度)÷
2=船速
(顺水速度-逆水速度)÷
2=水速
顺水速=船速×
2-逆水速=逆水速+水速×
2
逆水速=船速×
2-顺水速=顺水速-水速×
【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1、一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?
由条件知,顺水速=船速+水速=320÷
8,而水速为每小时15千米,所以,船速为每小时320÷
8-15=25(千米)
船的逆水速为25-15=10(千米)
船逆水行这段路程的时间为320÷
10=32(小时)
这只
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 毕业班 六年级 数学 应用题 解决问题 常见 例题 分析 详解