届高中数学苏教版 数列求和及综合应用 单元测试1 Word版 含答案Word下载.docx
- 文档编号:13724470
- 上传时间:2022-10-13
- 格式:DOCX
- 页数:32
- 大小:516.25KB
届高中数学苏教版 数列求和及综合应用 单元测试1 Word版 含答案Word下载.docx
《届高中数学苏教版 数列求和及综合应用 单元测试1 Word版 含答案Word下载.docx》由会员分享,可在线阅读,更多相关《届高中数学苏教版 数列求和及综合应用 单元测试1 Word版 含答案Word下载.docx(32页珍藏版)》请在冰豆网上搜索。
为递增数列.
二、填空题
2.(2016·
T14)若数列
的前
项和
,则
的通项公式是
_________
【解题指南】先利用S1=a1求出a1的值,再利用Sn-Sn-1=an求出通项公式an.
【解析】由
,解得
,又
,得
,所以数列
是首项为1,公比为
的等比数列.故数列的通项公式
【答案】
3.(2016·
湖南高考理科·
T15)
设
为数列
的前n项和,
则
(1)
_____;
(2)
___________.
【解题指南】
(1)令
代入即可得到答案.
(2)通过
整理可发现当当
为偶数时有
,于是代入第
(2)问的展开式即可得到答案.
【解析】
(1)因为
①,
②,把②代入①得
(2)因为当
时,
,整理得
,所以,当
为偶数时,
当
为奇数时,
,所以当
4.(2016·
重庆高考理科·
T12)已知
是等差数列,
,公差
为其前
项和,若
、
成等比数列,则
【解题指南】先根据
成等比数列求出数列的公差,然后根据公式求出
【解析】因为
成等1比数列,
化简得
所以
故
三、解答题
5.(2016·
大纲版全国卷高考理科·
T22)已知函数
(
)若
;
)设数列
)
令
或
若
综上
的最小值为
)令
,由(
)知,
即
取
6.(2016·
浙江高考文科·
T19)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(1)求d,an.
(2)若d<
0,求|a1|+|a2|+|a3|+…+|an|.
(1)由a1,2a2+2,5a3成等比数列可以求得a1与d的关系,进而可求得d与an.
(2)由d<
0,先判断该数列从第几项开始大于零,从第几项开始小于零,再根据等差数列前n项和的性质求解.
(1)由题意得,5a3·
a1=(2a2+2)2,
d2-3d-4=0,解得d=-1或d=4,所以an=-n+11或an=4n+6.
(2)设数列{an}前n项和为Sn,
因为d<
0,所以d=-1,an=-n+11,则
n≤11时,|a1|+|a2|+|a3|+…+|an|=Sn=-
n2+
n;
n≥12时,|a1|+|a2|+…+|a11|+|a12|+…+|an|=a1+a2+…+a11-a12-…-an=S11-(Sn-S11)=-Sn+2S11=
n2-
n+110.
综上所述,|a1|+|a2|+…+|an|=
7.(2016·
重庆高考文科·
T16)设数列
满足:
.
(Ⅰ)求
的通项公式及前
(Ⅱ)已知
为前
项和,且
,求
【解题指南】直接根据递推关系可求出数列的通项公式及前
项和,再利用题目中所给条件求解
(Ⅰ)由题设知
是首项为
公比为
的等比数列,所以
(Ⅱ)
所以公差
故
8.(2016·
上海高考理科·
T23)给定常数c>
0,定义函数f(x)=2|x+c+4|-|x+c|.数列a1,a2,a3,…,满足an+1=f(an),n∈N*.
(1)若a1=-c-2,求a2及a3.
(2)求证:
对任意n∈N*,an+1-an≥c.
(3)是否存在a1,使得a1,a2,…,an,…,成等差数列?
若存在,求出所有这样的a1;
若不存在,说明理由.
(1)a2=2,a3=c+10.
(2)f(x)=
当an≥-c时,an+1-an=c+8>
c.
当-c-4≤an<
-c时,an+1-an=2an+3c+8≥2(-c-4)+3c+8=c;
当an<
-c-4时,an+1-an=-2an-c-8>
-2(-c-4)-c-8=c;
所以,对任意n∈N*,an+1-an≥c.
(3)由
(2),结合c>
0,得an+1>
an,即{an}为无穷递增数列,
又{an}为等差数列,所以存在正数M,当n>
M时,an>
-c,
从而an+1=f(an)=an+c+8,
由于{an}为等差数列,因此其公差d=c+8.
①若a1<
-c-4,则a2=f(a1)=-a1-c-8,
又a2=a1+d=a1+c+8,故-a1-c-8=a1+c+8,
即a1=-c-8,从而a2=0,
当n≥2时,由于{an}为递增数列,故an≥a2=0>
-c,所以an+1=f(an)=an+c+8,
而a2=a1+c+8,故当a1=-c-8时,{an}为无穷等差数列,符合要求.
②若-c-4≤a1<
-c,则a2=f(a1)=3a1+3c+8,
又a2=a1+d=a1+c+8,所以,3a1+3c+8=a1+c+8,得a1=-c,舍去.
③若a1≥-c,则由an≥a1得到an+1=f(an)=an+c+8,
从而{an}为无穷等差数列,符合要求.
综上a1的取值集合为{-c-8}∪[-c,+∞).
9.(2016·
上海高考文科·
T22)已知函数
,无穷数列
满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值.
(3)是否存在a1,使得a1,a2,…,an…成等差数列?
若存在,求出所有这样的a1;
若不存在,说明理由.
(1)a2=2,a3=0,a4=2.
(2)a2=2-|a1|=2-a1,a3=2-|a2|=2-|2-a1|.
①当0<
a1≤2时,a3=2-(2-a1)=a1,
=(2-a1)2,得a1=1.
②当a1>
2时,a3=2-(a1-2)=4-a1,
所以a1(4-a1)=(2-a1)2,
得a1=2-
(舍去)或a1=2+
综合①②得a1=1或a1=2+
(3)假设这样的等差数列存在,那么a2=2-|a1|,a3=2-|2-|a1||.
由2a2=a1+a3得2-a1+|2-|a1||=2|a1|(*).
以下分情况讨论:
①当a1>
2时,由(*)得a1=0,与a1>
2矛盾;
②当0<
a1≤2时,由(*)得a1=1,
从而an=1(n=1,2,…),
所以{an}是一个等差数列;
③当a1≤0时,则公差d=a2-a1=(a1+2)-a1=2>
0,
因此存在m≥2使得am=a1+2(m-1)>
2.
此时d=am+1-am=2-|am|-am<
0,矛盾.
综合①②③可知,当且仅当a1=1时,a1,a2,a3,…,构成等差数列.
10.(2016·
江苏高考数学科·
T19)设
,公差为
的等差数列
是其前
项和。
记
,其中
为实数。
(1)若
,且
成等比数列,证明:
);
(2)若
是等差数列,证明:
。
【解题指南】利用条件
成等比数列,求出
,再代入证明
(2)利用条件
是等差数列建立与c有关方程。
【证明】由题设知,Sn=na+
d.
.又因为b1,b2,b4成等比数列,所以
即:
,化简得d2-2ad=0.因为d≠0,所以d=2a.
因此,对于所有的m∈N*,有Sm=m2a.
从而对于所有的k,n∈N*,有Snk=(nk)2a=n2k2a=n2Sk.
(2)设数列{bn}的公差是d1,则bn=b1+(n-1)d1,n∈N*,
代入Sn的表达式,整理得,对于所有的n∈N*,有
+(b1-d1-a+
d)n2+cd1n=c(d1-b1).
令A=d1-
d,B=b1-d1-a+
d,D=c(d1-b1),则对于所有的n∈N*,有An3+Bn2+cd1n=D. (*)
在(*)式中分别取n=1,2,3,4,得
A+B+cd1=8A+4B+2cd1=27A+9B+3cd1=64A+16B+4cd1,
从而有
由
(2)(3)得A=0,cd1=-5B,代入方程
(1),得B=0,从而cd1=0.
即d1-
d=0,b1-d1-a+
d=0,cd1=0.
若d1=0,则由d1-
d=0,得d=0,与题设矛盾,所以d1≠0.
又因为cd1=0,所以c=0.
11.(2016·
湖南高考文科·
为数列{
}的前项和,已知
,2
N
,并求数列{
}的通项公式;
(Ⅱ)求数列{
}的前
(Ⅰ)本题是利用递推关系
求数列的通项公式;
(Ⅱ)根据第(Ⅰ)问可知应利用错位相减法求数列前n项和.
(Ⅰ)令
,因为
时,由
,两式相减,整理得
,于是数列
是首项为1,公比为2的等比数列,所以,
(Ⅱ)由(
)知
,记其前
项和为
①
②
1-②得
从而
12.(2016·
江西高考理科·
T17)正项数列{an}的前n项和Sn满足:
(1)求数列{an}的通项公式an.
(2)令
,数列{bn}的前n项和为Tn.证明:
对于任意
,都有
.
(1)由题目中的等式求出
,然后由
求an;
(2)化简
,观察结构特征,选取求和的方法求Tn.
(1)由
得
由于
是正项数列,所以
.于是,当
=
又因为
符合上式.综上,数列
的通项公式为
(2)因为
13.(2016·
江西高考文科·
T16)正项数列{an}满足
(1)求数列{an}的通项公式an;
(2)令bn=
,求数列{bn}的前n项和Tn.
【解题指南】借助二次三项式的因式分解来求
,分析{bn}通项公式的特点选择正确的求和方法.
.由于{an}是正项数列,所以
(2)由
,bn=
14.(2016·
福建高考文科·
T17)已知等差数列
的公差d=1,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 届高中数学苏教版 数列求和及综合应用 单元测试1 Word版 含答案 高中数学 苏教版 数列 求和 综合 应用 单元测试 Word 答案