中考数学复习 第八讲一元二次方程及应用含详细参考答案Word文档格式.docx
- 文档编号:13713490
- 上传时间:2022-10-13
- 格式:DOCX
- 页数:18
- 大小:98.06KB
中考数学复习 第八讲一元二次方程及应用含详细参考答案Word文档格式.docx
《中考数学复习 第八讲一元二次方程及应用含详细参考答案Word文档格式.docx》由会员分享,可在线阅读,更多相关《中考数学复习 第八讲一元二次方程及应用含详细参考答案Word文档格式.docx(18页珍藏版)》请在冰豆网上搜索。
④、解方程:
若方程右边是非负数,则可用直接开平方法解方程
3、公式法:
如果方程ax2+bx+c=0(a≠0)满足b2-4ac≥0,则方程的求根公式
为
4、因式分解法:
一元二次方程化为一般形式后,如果左边能分解因式,即产生A.B=0的形式,则可将原方程化为两个方程,即、从而得方程的两根
一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是法和法】
三、一元二次方程根的判别式
关于X的一元二次方程ax2+bx+c=0(a≠0)根的情况由决定,我们把它叫做一元二次方程根的判别式,一般用符号表示
方程有两个实数跟,则
①当时,方程有两个不等的实数根
②当时,方程看两个相等的实数根
③当时,方程没有实数根
在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数】
四、一元二次方程根与系数的关系:
关于X的一元二次方程aX2+bx+c=0(a±
0)有两个根分别为X1、X2
则X1+X2=X1X2=
五、一元二次方程的应用:
解法步骤同一元一次方程一样,仍按照审、设、列、解、验、答六步进行
常见题型
1、增长率问题:
连续两率增长或降低的百分数a(1+X)2=b
2、利润问题:
总利润=×
或总利润=—
3、几何图形的面积、体积问题:
按面积、体积的计算公式列方程
因为通常情况下一元二次方程有两个根,所以解一元二次方程的应用题一定要验根,检验结果是否符合实际问题或是否满足题目中隐含的条件】
【重点考点例析】
考点一:
一元二次方程的解
例1(2013•牡丹江)若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是( )
A.2018B.2008C.2014D.2012
思路分析:
将x=1代入到ax2+bx+5=0中求得a+b的值,然后求代数式的值即可.
解:
∵x=1是一元二次方程ax2+bx+5=0的一个根,
∴a•12+b•1+5=0,
∴a+b=-5,
∴2013-a-b=2013-(a+b)=2013-(-5)=2018.
故选A.
点评:
此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a+b的值.
对应训练
1.(2013•黔西南州)已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是1
.
1.1
考点二:
一元二次方程的解法
例2(2013•宁夏)一元二次方程x(x-2)=2-x的根是( )
A.-1B.2C.1和2D.-1和2
先移项得到x(x-2)+(x-2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.
x(x-2)+(x-2)=0,
∴(x-2)(x+1)=0,
∴x-2=0或x+1=0,
∴x1=2,x2=-1.
故选D.
本题考查了解一元二次方程-因式分解法:
先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.
例3(2013•佛山)用配方法解方程x2-2x-2=0+1
首先把常数-2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.
x2-2x-2=0,
移项得:
x2-2x=2,
配方得:
x2-2x+1=2+1,
(x-1)2=3,
两边直接开平方得:
x-1=±
,
则x1=
+1,x2=-
+1.
此题主要考查了配方法解一元二次方程,配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
例4(2013•兰州)解方程:
x2-3x-1=0.
利于求根公式x=
来解方程.
关于x的方程x2-3x-1=0的二次项系数a=1,一次项系数b=-3,常数项c=-1,则
x═
=
解得,x1=
,x2=
本题考查了解一元二次方程--公式法.利于公式x=
来解方程时,需要弄清楚公式中的字母a、b、c所表示的含义.
2.(2013•陕西)一元二次方程x2-3x=0的根是x1=0,x2=3
2.x1=0,x2=3
3.(2013•白银)现定义运算“★”,对于任意实数a、b,都有a★b=a2-3a+b,如:
3★5=32-3×
3+5,若x★2=6,则实数x的值是-1或4
3.-1或4
4.(2013•山西)解方程:
(2x-1)2=x(3x+2)-7.
4.解:
(2x-1)2=x(3x+2)-7,
4x2-4x+1=3x2+2x-7,
x2-6x=-8,
(x-3)2=1,
x-3=±
1,
x1=2,x2=4.
考点三:
根的判别式的运用
例5(2013•乐山)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求证:
方程有两个不相等的实数根;
(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC是等腰三角形时,求k的值.
(1)先计算出△=1,然后根据判别式的意义即可得到结论;
(2)先利用公式法求出方程的解为x1=k,x2=k+1,然后分类讨论:
AB=k,AC=k+1,当AB=BC或AC=BC时△ABC为等腰三角形,然后求出k的值.
解答:
(1)证明:
∵△=(2k+1)2-4(k2+k)=1>0,
∴方程有两个不相等的实数根;
(2)解:
一元二次方程x2-(2k+1)x+k2+k=0的解为x=
,即x1=k,x2=k+1,
当AB=k,AC=k+1,且AB=BC时,△ABC是等腰三角形,则k=5;
当AB=k,AC=k+1,且AC=BC时,△ABC是等腰三角形,则k+1=5,解得k=4,
所以k的值为5或4.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:
当△>0,方程有两个不相等的实数根;
当△=0,方程有两个相等的实数根;
当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.
5.(2013•泰州)下列一元二次方程中,有两个不相等实数根的方程是( )
A.x2-3x+1=0B.x2+1=0C.x2-2x+1=0D.x2+2x+3=0
5.A
6.(2013•乌鲁木齐)若关于x的方程式x2-x+a=0有实根,则a的值可以是( )
A.2B.1C.0.5D.0.25
6.D
7.(2013•六盘水)已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k<-2B.k<2C.k>2D.k<2且k≠1
7.D
8.(2013•北京)已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若k为正整数,且该方程的根都是整数,求k的值.
8.解:
(1)根据题意得:
△=4-4(2k-4)=20-8k>0,
解得:
k<
;
(2)由k为整数,得到k=1或2,
利用求根公式表示出方程的解为x=-1±
∵方程的解为整数,
∴5-2k为完全平方数,
则k的值为2.
考点四:
一元二次方程的应用
例6(2013•连云港)小林准备进行如下操作实验;
把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.
(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?
(2)小峰对小林说:
“这两个正方形的面积之和不可能等于48cm2.”他的说法对吗?
请说明理由.
(1)设剪成的较短的这段为xcm,较长的这段就为(40-x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;
(2)设剪成的较短的这段为mcm,较长的这段就为(40-m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明小峰的说法错误,否则正确.
(1)设剪成的较短的这段为xcm,较长的这段就为(40-x)cm,由题意,得
(
)2+(
)2=58,
x1=12,x2=28,
当x=12时,较长的为40-12=28cm,
当x=28时,较长的为40-28=12<28(舍去)
∴较短的这段为12cm,较长的这段就为28cm;
(2)设剪成的较短的这段为mcm,较长的这段就为(40-m)cm,由题意,得
)2=48,
变形为:
m2-40m+416=0,
∵△=(-40)2-4×
416=-64<0,
∴原方程无解,
∴小峰的说法正确,这两个正方形的面积之和不可能等于48cm2.
本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,根的判别式的运用,解答本题时找到等量关系建立方程和运用根的判别式是关键.
9.(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.
(1)求甲、乙两队单独完成这项工程各需几个月?
(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?
(甲、乙两队的施工时间按月取整数)
9.解:
(1)设甲队单独完成需要x天,则乙队单独完成需要x-5天,
由题意得,x(x-5)=6(x+x-5),
解得x1=15,x2=2(不合题意,舍去),
则x-5=10.
答:
甲队单独完成这项工程需要15个月,则乙队单独完成这项工程需要10个月;
(2)设甲队施工y个月,则乙队施工
y个月,
由题意得,100y+(100+50)
≤1500,
解不等式得,y≤8.57,
∵施工时间按月取整数,
∴y≤8,
完成这项工程,甲队最多施工8个月才能使工程款不超过1500万元.
【聚焦山东中考】
1.(2013•威海)已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是( )
A.m≥-
B.m≥0C.m≥1D.m≥2
1.B
2.(2013•日照)已知一元二次方程x2-x-3=0的较小根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考数学复习 第八讲一元二次方程及应用含详细参考答案 中考 数学 复习 第八 一元 二次方程 应用 详细 参考答案