北师大版初中七年级数学下册7易错专题等腰三角形中易漏解或多解的问题文档格式.docx
- 文档编号:13713474
- 上传时间:2022-10-13
- 格式:DOCX
- 页数:5
- 大小:52.29KB
北师大版初中七年级数学下册7易错专题等腰三角形中易漏解或多解的问题文档格式.docx
《北师大版初中七年级数学下册7易错专题等腰三角形中易漏解或多解的问题文档格式.docx》由会员分享,可在线阅读,更多相关《北师大版初中七年级数学下册7易错专题等腰三角形中易漏解或多解的问题文档格式.docx(5页珍藏版)》请在冰豆网上搜索。
________,理由是______________________.
3.某等腰三角形的一边长是5cm,周长是20cm,求此等腰三角形其他两边的长.
4.已知等腰三角形一腰上的中线将三角形的周长分成9cm和15cm两部分,求这个三角形的腰长和底边的长.
类型二 当腰和底不明求角度时没有分类讨论
5.已知某等腰三角形的一个内角为50°
,则这个等腰三角形顶角的度数为( )
A.50°
B.80°
C.50°
或80°
D.40°
或65°
6.某等腰三角形的一个外角为100°
,则它的顶角的度数为__________.
7.已知某等腰三角形的两个内角的度数之比为2∶1,求这个等腰三角形顶角的度数.
8.★若一个大的等腰三角形能被分割为两个小等腰三角形,试求该大等腰三角形顶角的度数(要求画出相应图形,并写出求解过程).
类型三 三角形的形状不明时与高结合没有分类讨论
9.某等腰三角形的一内角为80°
,则此等腰三角形腰上的高与底边的夹角的度数是__________.
10.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50°
,则∠B等于________________.
11.★某等腰三角形一腰上的高与另一腰的夹角为20°
,试求这个等腰三角形各内角的度数.
类型四 两点固定,另一点不固定,确定三角形个数时漏解
12.如图,网格中的每个小正方形的边长为1,A,B是格点,以A,B,C为等腰三角形顶点的所有格点C的个数为【易错7】
( )
A.7个B.8个
C.9个D.10个
第12题图 第13题图
13.如图,在4×
5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以A,B,C为顶点的三角形是等腰三角形,则符合条件的C点有________个.【易错7】
参考答案与解析
1.A
2.不正确 3,3,6不能构成三角形
3.解:
当腰长为5cm时,底边长为20-5×
2=10(cm).∵5+5=10,∴不能构成三角形.当底边长为5cm时,腰长为(20-5)×
=7.5(cm).∵7.5+5>7.5,∴可以构成三角形,∴当5cm为底边时,其他两边的长为7.5cm,7.5cm.
4.解:
设腰长为xcm.分两种情况进行讨论.
(1)当腰长与腰长的一半的和是9cm时,x+x=9,解得x=6,∴底边长为15-×
6=12(cm).∵6+6=12,∴6cm,6cm,12cm不能组成三角形.
(2)当腰长与腰长的一半的和是15cm时,x+x=15,解得x=10,∴底边长为9-×
10=4(cm).∵4+10>10,∴10cm,10cm,4cm能组成三角形.综上所述,三角形的腰长为10cm,底边长为4cm.
5.C 6.80°
或20°
7.解:
分两种情况进行讨论:
(1)当底角与顶角的度数比是2∶1时,等腰三角形的顶角是180°
×
=36°
;
(2)当顶角与底角的度数比是2∶1时,等腰三角形的顶角是180°
=90°
.即该等腰三角形的顶角为36°
或90°
.
8.解:
分四种情况讨论:
(1)如图①,△ABC中,AB=AC,BD=AD,AC=CD,∴∠B=∠C=∠BAD,∠CDA=∠CAD.∵∠CDA=180°
-∠BDA=180°
-(180°
-∠B-∠BAD)=2∠B,∴∠BAC=3∠B.∵∠BAC+∠B+∠C=180°
,∴5∠B=180°
,∴∠B=36°
,∴∠BAC=108°
(2)如图②,△ABC中,AB=AC,AD=BD=CD,∴∠B=∠C=∠DAC=∠DAB,∴∠BAC=2∠B.∵∠BAC+∠B+∠C=180°
,∴4∠B=180°
,∴∠B=45°
,∴∠BAC=90°
(3)如图③,△ABC中,AB=AC,BD=AD=BC,∴∠ABC=∠C,∠A=∠ABD,∠BDC=∠C.∵∠BDC=180°
-∠BDA=2∠A,∴∠C=2∠A,∴∠ABC=2∠A.∵∠A+∠ABC+∠C=180°
,∴5∠A=180°
,∴∠A=36°
(4)如图④,△ABC中,AB=AC,BD=AD,CD=BC.设∠A=x.∵AD=BD,∴∠DBA=∠A=x,∴∠BDC=180°
-∠ADB=2x.∵AB=AC,∴∠DBC=-x.∵CD=BC,∴∠BDC=∠DBC,∴2x=-x,∴x=.
综上所述,这个大等腰三角形顶角的度数为108°
或36°
或.
方法点拨:
本题应使用方程思想,根据等腰三角形等边对等角,再结合三角形的内角和求角度.正确把握题意,归纳出四种情形,防止漏解是解题关键.
9.10°
或40°
10.70°
11.解:
(1)如图①,当△ABC(AB=AC)为锐角三角形时,∠ABD=20°
,BD⊥AC,∴∠A=70°
,∴∠ABC=∠C=(180°
-∠A)=55°
(2)如图②,当△ABC(AB=AC)为钝角三角形时,∠ABD=20°
,BD⊥AC,∴∠DAB=70°
,∴∠BAC=110°
-∠BAC)=35°
.综上所述,这个等腰三角形各内角的度数分别为70°
,55°
或110°
,35°
12.B 解析:
符合条件的点数有8个,如图所示.
第12题图
13.5 解析:
如图,分别以AB为腰、底找等腰三角形,故符合条件的C点有5个.
第13题图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 初中 七年 级数 下册 专题 等腰三角形 中易漏解 问题