山东省威海市中考数学试卷解析版.doc
- 文档编号:1368653
- 上传时间:2022-10-21
- 格式:DOC
- 页数:26
- 大小:549KB
山东省威海市中考数学试卷解析版.doc
《山东省威海市中考数学试卷解析版.doc》由会员分享,可在线阅读,更多相关《山东省威海市中考数学试卷解析版.doc(26页珍藏版)》请在冰豆网上搜索。
2017年山东省威海市中考数学试卷
参考答案与试题解析
一、选择题:
本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分.
1.从新华网获悉:
商务部5月27日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553亿元人民币,16553亿用科学记数法表示为( )
A.1.6553×108 B.1.6553×1011 C.1.6553×1012 D.1.6553×1013
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:
将16553亿用科学记数法表示为:
1.6553×1012.
故选:
C.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.某校排球队10名队员的身高(厘米)如下:
195,186,182,188,188,182,186,188,186,188.
这组数据的众数和中位数分别是( )
A.186,188 B.188,187 C.187,188 D.188,186
【分析】根据众数和中位数的定义求解可得.
【解答】解:
将数据重新排列为:
182、182、186、186、186、188、188、188、188、195,
∴众数为188,中位数为=187,
故选:
B.
【点评】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.
3.下列运算正确的是( )
A.3x2+4x2=7x4 B.2x33x3=6x3
C.a÷a﹣2=a3 D.(﹣a2b)3=﹣a6b3
【分析】原式各项计算得到结果,即可作出判断.
【解答】解:
A、原式=7x2,不符合题意;
B、原式=6x6,不符合题意;
C、原式=aa2=a3,符合题意;
D、原式=﹣a6b3,不符合题意,
故选C
【点评】此题考查了整式的混合运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.
4.计算﹣()2+(+π)0+(﹣)﹣2的结果是( )
A.1 B.2 C. D.3
【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.
【解答】解:
﹣()2+(+π)0+(﹣)﹣2
=﹣2+1+4
=3
故选:
D.
【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:
在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
5.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
【分析】分别求出每一个不等式的解集,根据口诀:
同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【解答】解:
解不等式﹣>1,得:
x<﹣2,
解不等式3﹣x≥2,得:
x≤1,
∴不等式组的解集为x<﹣2,
故选:
B.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
6.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40m长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是( )
A. B. C. D.
【分析】先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠A.
【解答】解:
sinA===0.25,
所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为
故选A.
【点评】本题考查了计算器﹣三角函数:
正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.
7.若1﹣是方程x2﹣2x+c=0的一个根,则c的值为( )
A.﹣2 B.4﹣2 C.3﹣ D.1+
【分析】把x=1﹣代入已知方程,可以列出关于c的新方程,通过解新方程即可求得c的值.
【解答】解:
∵关于x的方程x2﹣2x+c=0的一个根是1﹣,
∴(1﹣)2﹣2(1﹣)+c=0,
解得,c=﹣2.
故选:
A.
【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
8.一个几何体由n个大小相同的小正方体搭成,其左视图、俯视图如图所示,则n的最小值是( )
A.5 B.7 C.9 D.10
【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层和第三层的个数,从而算出总的个数.
【解答】解:
由题中所给出的左视图知物体共三层,每一层都是两个小正方体;
从俯视图可以可以看出最底层的个数
所以图中的小正方体最少1+2+4=7.
故选B.
【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
9.甲、乙两人用如图所示的两个转盘(每个转盘别分成面积相等的3个扇形)做游戏,游戏规则:
转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是( )
A. B. C. D.
【分析】首先画出树状图,然后计算出数字之和为偶数的情况有5种,进而可得答案.
【解答】解:
如图所示:
数字之和为偶数的情况有5种,
因此加获胜的概率为,
故选:
C.
【点评】此题主要考查了画树状图和概率,关键是掌握概率=所求情况数与总情况数之比.
10.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是( )
A.BO=OH B.DF=CE C.DH=CG D.AB=AE
【分析】根据平行四边形的性质、等腰三角形的判定和性质一一判断即可.
【解答】解:
∵四边形ABCD是平行四边形,
∴AH∥BG,AD=BC,
∴∠H=∠HBG,
∵∠HBG=∠HBA,
∴∠H=∠HBA,
∴AH=AB,同理可证BG=AB,
∴AH=BG,∵AD=BC,
∴DH=CG,故③正确,
∵AH=AB,∠OAH=∠OAB,
∴OH=OB,故①正确,
∵DF∥AB,
∴∠DFH=∠ABH,
∵∠H=∠ABH,
∴∠H=∠DFH,
∴DF=DH,同理可证EC=CG,
∵DH=CG,
∴DF=CE,故②正确,
无法证明AE=AB,
故选D.
【点评】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y=在同一坐标系中的大致图象是( )
A. B. C. D.
【分析】先根据二次函数的图象,确定a、b、c的符号,再根据a、b、c的符号判断反比例函数y=与一次函数y=(b+c)x的图象经过的象限即可.
【解答】解:
由二次函数图象可知a>0,c>0,
由对称轴x=﹣>0,可知b<0,
当x=1时,a+b+c<0,即b+c<0,
所以正比例函数y=(b+c)x经过二四象限,
反比例函数y=图象经过一三象限,
故选C.
【点评】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于通过二次函数图象推出a、b、c的取值范围.
12.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为( )
A.y= B.y= C.y= D.y=
【分析】过点C作CE⊥y轴于E,根据正方形的性质可得AB=BC,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE,然后利用“角角边”证明△ABO和△BCE全等,根据全等三角形对应边相等可得OA=BE=4,CE=OB=3,再求出OE,然后写出点C的坐标,再把点C的坐标代入反比例函数解析式计算即可求出k的值.
【解答】解:
如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,
∴∠ABO+∠CBE=90°,
∵∠OAB+∠ABO=90°,
∴∠OAB=∠CBE,
∵点A的坐标为(﹣4,0),
∴OA=4,
∵AB=5,
∴OB==3,
在△ABO和△BCE中,
,
∴△ABO≌△BCE(AAS),
∴OA=BE=4,CE=OB=3,
∴OE=BE﹣OB=4﹣3=1,
∴点C的坐标为(3,1),
∵反比例函数y=(k≠0)的图象过点C,
∴k=xy=3×1=3,
∴反比例函数的表达式为y=.
故选A.
【点评】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.
二、填空题:
本大题共6小题,每小题3分,共18分,只要求填写最后结果.
13.如图,直线l1∥l2,∠1=20°,则∠2+∠3= 200° .
【分析】过∠2的顶点作l2的平行线l,则l∥l1∥l2,由平行线的性质得出∠4=∠1=20°,∠BAC+∠3=180°,即可得出∠2+∠3=200°.
【解答】解:
过∠2的顶点作l2的平行线l,如图所示:
则l∥l1∥l2,
∴∠4=∠1=20°,∠BAC+∠3=180°,
∴∠2+∠3=180°+20°=200°;
故答案为:
200°.
【点评】本题考查了平行线性质:
两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
14.方程+=1的解是 x=3 .
【分析】方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.
【解答】解:
由原方程,得
3﹣x﹣1=x﹣4,
﹣2x=﹣6,
x=3,
经检验x=3是原方程的解.
故答案是:
x=3.
【点评】本题考查了解分式方程,把分式方程转化为整式方程求解.最后注意需验根.
15.阅读理解:
如图1,⊙O与直线a、b都相切,不论⊙O如何转动,直线a、b之间的距离始终保持不变(等于⊙O的直径),我们把具有这一特性的图形成为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.
拓展应用:
如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线c,d之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线c,d之间的距离等于2cm,则莱洛三角形的周长为 2π cm.
【分析】由等宽曲线的定义知AB=BC=AC=2cm,即可得∠BAC=∠ABC=∠ACB=60°,根据弧长公式分别求得三段弧的长即可得其周长.
【解答】解:
如图3,由题意知AB=BC=AC=2cm,
∴∠BAC=∠ABC=∠ACB=60°,
∴在以点C为圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 威海市 中考 数学试卷 解析
