高三数学上学期期中试题 理Word格式.docx
- 文档编号:13681012
- 上传时间:2022-10-12
- 格式:DOCX
- 页数:27
- 大小:522.95KB
高三数学上学期期中试题 理Word格式.docx
《高三数学上学期期中试题 理Word格式.docx》由会员分享,可在线阅读,更多相关《高三数学上学期期中试题 理Word格式.docx(27页珍藏版)》请在冰豆网上搜索。
为真”是“
或
为真”的必要不充分条件;
③已知幂函数
的图象经过点
的值等于
;
④已知向量
,则向量
在向量
方向上的投影是
.
说法正确的个数是()
A.1B.2C.3D.4
6.已知函数
是R上的增函数,则
≤
<0B.
<0
7.函数
的图像大致为()
ABCD
8.已知函数
,则要得到其导函数
的图象,只需将函数
的图象()
A.向右平移
个单位B.向左平移
个单位
C.向右平移
个单位D.左平移
9.设函数
在
上可
导,其导函数为
,且函数
的图像如图所示,则下列结论中一定成立的是()
A.函数
有极大值
和极小值
B.B.函数
C.函数
D.函数
10.定义在
上的函数
满足:
是
的导函数,则不等式
(其中
为自然对数的底数)的解集为()
第II卷(共100分)
二、填空题:
本大题共5小题,每小题5分,共25分.
11.已知命题
,命题
成立,若“
”为真命题,则实数m的取值范围是__.
12.若函数
在R上存在极值,则实数
的取值范围是______.
13.过点
作曲线
的切线,设该切线与曲线及
轴所围图形的面积为
则
.
14.在
中,角A、B、C的对边分别为
,且满足
则角B的大小为;
15.对于函数
,有下列5个结论:
任取
,都有
函数
上单调递增;
,对一切
恒成立;
有3个零点;
若关于
的方程
有且只有两个不同的实根
则其中所有正确结论的序号是.
三、解答题:
解答应写出必要的文字说明,证明过程或演算步骤.
16.(本题12分)已知集合
集合
.
(1)求
(2)若集合
,且
,求实数
的取值范围.
17.(本题12分)已知函数
(Ⅰ)求函数
的最小正周期及单调递减区间;
(Ⅱ)若
,求
的值域.
18.(本题12分)在△ABC中,a,b,c分别为内角A,B,C的对边,面积
(1)求角C的大小;
(2)设函数
的最大值,及取得最大值时角B的值.
19.(本题12分)在淘宝网上,某店铺专卖孝感某种特产.由以往的经
验表明,不考虑其他因素,该特产每日的销售量
(单位:
千克)与销售价格
元/千克,
)满足:
当
时,
.已知当销售价格为
元/千克时,每日可售出该特产600千克;
当销售价格为
元/千克时,每日可售出150千克.
的值,并确定
关于
的函数解析式;
(2)若该特产的销售成本为
元/千克,试确定销售价格
的值,使店铺每日销售该特产所获利润
最大(
精确到0.1元/千克).
20.(本题13分)(10分)已知函数
(1)当
时,求曲线
在点
处的切线方程;
(2)求函数
的极值.
21.(本题14分)(本小题满分12分)已知函数
(1)求函数
的单调递增区间;
(2)若不等式
在区间(0,
上恒成立,求
的取值范围;
(3)求证:
参考答案(理)
1.A.【解析】
则
考点:
集合的运算.
2.D.【解析】因为
,所以
是偶函数,且在
上单调递增,与之相同的只有D选项,因为A选项是奇函数,不合题意;
B选项是在
上单调递减;
C选项为非奇非偶函数,不合题意,故选D.
函数的单调性与奇偶性.
3.A【解析】设
由
则有
所以
对函数定义域的理解。
4.B.【解析】因为
,又由“
”的必要不充分条件知,集合
是集合
的子集,即
(其中等
号不同时成立),所以,
,故选B.
充分必要条件;
一元二次不等式的解法.
5.A【解析】①命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x≤0”,故①不正确;
②命题“p且q为真”,则命题p、q均为真,所以“p或q为真”.反之“p或q为真”,则p、q不见
得都真,所以不一定有“p且q为真”所以命题“p且q为真”是“p或q为真”的充
分不必要条件,故命题②不正确;
③由幂函数f(x)=xα的图象经过点(2,
),所以2α=
,所以α=
,所以幂函数为
,所以命题③正确;
④向量
和
的夹角,故④错误.
命题真假的判断.
6.B【解析】函数
的对称轴
要是函数在R上是增函数,则应满足,
解得
函数的单调性.
7.
【解析】
为奇函数且
时,函数无意义,可排除
,又在
是减函数,故选
1.函数的奇偶性;
2.函数的单调性;
3.函数的图象.
8.B【解析】函数
,所以函数
,所以将函数函数
的图象上所有的点向左平移
个单位长
度得到
,故选B.
的图象变换.
9.D.【解析】由函数
的图像,可得:
和极小
值
函数的极值.
10.A【解析】由题意可知不等式为
,设
所以函数
在定义
域上单调递增,又因为
的解集为
导数在在函数单调性中的应用.
11.
【解析】因为命题
成立,所以
又因为“
”为真命题,所以
命题间的
关系.
12.
.【解析】由题意知,函数的
导数为
,因为函数
在R上存在极值,所以
有两个不等实根,其判别式
的取值范围为
.故应填
利用导数研究函数的极值.
13.
【解析】由题只需求出在A点处的切线方程,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率从而得到切线的方程进而求得面积.
过点A的切线的斜率为
故过点A的切线l的方程为
,即y=2x-1,令y=0,得
利用导数研究曲线上某点切线方程.
14.
.【解析】由平面向量的数量积定义,得
即
,由正弦定理,得
即
又
平面向量的数量积、正弦定理.
15.①④⑤【解析】
:
上恰好为一个周期,分段函数第二段是一个类周期函数且周期为
,最值每
个单位变为前面的一半.
正确,因为
错误,因为
的单调性和
的单调性一致,而
有增有减.
错误,依题意应为
.画出
的图象如下图所示,其中
上的对称轴,故由图可知④⑤正确.
分段函数,函数单调性,函数零点.
16.
(1)(-3,0);
(2)
(1)由题可得
(2)由题
综上:
集合的交,并,补的混合运算
17.(Ⅰ)
(Ⅱ)
(1)由题设
的最小正周期
又由
得
所以函数的单调递减区间为:
(2)由
所以
1、三角函数的恒等变换;
2、三角函数的性质.
18.
(1)
有最大值是
(1)由S=
abs1n
及题设条件得
=
abcos
1分
即s1n
cos
tan
2分
0<
<
4分
7分
,9分
∵
∴
(
没讨论,扣1分)10分
,即
12分
1.和差倍半的三角函数;
2.三角形的面积;
3.三角函数的图象和性质.
19.
(1)
(2)当销售价格为
元的值,使店铺所获利润最大.
(1)由题意:
时
又∵
.2分
的函数解析式为:
(2)由题意:
,6分
∴
时有最大值
。
8分
10分
∴当
有最大值
即当销售价格为
元的值,使店铺所获利润最大.12分
1.分段函数;
2.函数的应用;
3.二次函数的性质.
20.
(1)
.
(2)当
时,函数
无极值
处取得极小值
无极大值.
时,
计算
由直线方程的点斜式即得曲线在点
处的切线方程
可知,分
讨论函数的单调性及极值情况.
试题解析:
的定义域为
处的切线方程为
可知:
①当
函数
为
上的增函数,函数
无极值;
②当
时,由
;
处取得极小值,且极小值为
无极大值.
综上:
1.导数的几何意义;
2.应用导数研究函数的单调性、极值.
21.
(1)单调递增区间为
(3)见解析.
(1)∵
(
∴
令
,得
故函数
的单调递增区间为
3分
,令
,则问题转化成
不小于
的最大值……
分
又
令
内变化时,
变化情况如下表:
由表知当
时,函数
取得最大值,且最大值为
因此
(3)由
(2)知
又因为
1.应用导数研究函数的单调性、最值、证明不等式;
2.裂项相消法;
3.转化与化归思想.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三数学上学期期中试题 数学 学期 期中 试题