高考数学中的内切球和外接球问题电子教案文档格式.docx
- 文档编号:13671117
- 上传时间:2022-10-12
- 格式:DOCX
- 页数:8
- 大小:202.04KB
高考数学中的内切球和外接球问题电子教案文档格式.docx
《高考数学中的内切球和外接球问题电子教案文档格式.docx》由会员分享,可在线阅读,更多相关《高考数学中的内切球和外接球问题电子教案文档格式.docx(8页珍藏版)》请在冰豆网上搜索。
例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为,则这个球的体积为.
解设正六棱柱的底面边长为,高为,则有
∴正六棱柱的底面圆的半径,球心到底面的距离.∴外接球的半径.体积:
.
小结本题是运用公式求球的半径的,该公式是求球的半径的常用公式.
二、构造法(补形法)
1、构造正方体
例5若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是_______________.
例3若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是.
故其外接球的表面积.
小结:
一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为,则有.出现“墙角”结构利用补形知识,联系长方体。
【原理】:
长方体中从一个顶点出发的三条棱长分别为,则体对角线长为,几何体的外接球直径为体对角线长即
练习:
在四面体中,共顶点的三条棱两两垂直,其长度分别为,若该四面体的四个顶点在一个球面上,求这个球的表面积。
球的表面积为
例6一个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为()
例7已知球的面上四点A、B、C、D,,,,则球的体积等于.
解析:
本题同样用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于,,联想长方体中的相应线段关系,构造如图4所示的长方体,又因为,则此长方体为正方体,所以长即为外接球的直径,利用直角三角形解出.故球的体积等于.(如图4)
2、例8(2008年安徽高考题)已知点A、B、C、D在同一个球面上,,,若,则球的体积是
解析:
首先可联想到例7,构造下面的长方体,于是为球的直径,O为球心,为半径,要求B、C两点间的球面距离,只要求出即可,在中,求出,所以,故B、C两点间的球面距离是.(如图5)
本文章在给出图形的情况下解决球心位置、半径大小的问题。
三.多面体几何性质法
例.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
A.B.C.D..
小结:
本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.
四.寻求轴截面圆半径法
例正四棱锥的底面边长和各侧棱长都为,点都在同一球面上,则此球的体积为
解:
设正四棱锥的底面中心为,外接球的球心为,如图1所示.∴由球的截面的性质,可得.
又,∴球心必在所在的直线上.
∴的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.
在中,由,
∴.
∴是外接圆的半径,也是外接球的半径.故.
根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.
五.确定球心位置法
例5在矩形中,,沿将矩形折成一个直二面角,则四面体的外接球的体积为
A.B.C.D.
设矩形对角线的交点为,则由矩形对角线互相平分,可知.∴点到四面体的四个顶点的距离相等,即点为四面体的外接球的球心,如图2所示.∴外接球的半径.故.
出现两个垂直关系,利用直角三角形结论。
直角三角形斜边中线等于斜边一半。
球心为直角三角形斜边中点。
【例题】:
已知三棱锥的四个顶点都在球的球面上,且求球的体积。
解:
且
因为所以知:
所以所以可得图形为:
在中斜边为
取斜边的中点,
在中
所以在几何体中,即为该四面体的外接球的球心
所以该外接球的体积为
【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。
1.(陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()
A.B.C.D.
答案 B
2.直三棱柱的各顶点都在同一球面上,若
,则此球的表面积等于。
在中,,可得,由正弦定理,可得
外接圆半径r=2,设此圆圆心为,球心为,在中,易得球半径,故此球的表面积为.
3.正三棱柱内接于半径为的球,若两点的球面距离为,则正三棱
柱的体积为 .
答案8
4.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为
A.B.C.D.
答案A
【解析】此正八面体是每个面的边长均为的正三角形,所以由知,
,则此球的直径为,故选A。
5.已知正方体外接球的体积是,那么正方体的棱长等于()
A.2B.C.D.
答案D
6.(2006山东卷)正方体的内切球与其外接球的体积之比为()
A.1∶B.1∶3C.1∶3D.1∶9
答案C
7.(2008海南、宁夏理科)一个六棱柱的底面是正六边
形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,则这个球的体积为 .
答案
8.(2007天津理•12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱
的长分别为1,2,3,则此球的表面积为 .
答案
9.(2007全国Ⅱ理•15)一个正四棱柱的各个顶点在一个直径为2cm的球面上。
如果正四
棱柱的底面边长为1cm,那么该棱柱的表面积为cm2.
10.(2006辽宁)如图,半径为2的半球内有一内接正六棱锥,则此正六棱
4.WWW。
google。
com。
cn。
大学生政策2004年3月23日锥的侧面积是________.
11.(辽宁省抚顺一中2009届高三数学上学期第一次月考)
手工艺制品是我国一种传统文化的象征,它品种多样,方式新颖,制作简单,深受广大学生朋友的喜欢。
当今大学生的消费行为表现在追求新颖,追求时尚。
追求个性,表现自我的消费趋向:
购买行为有较强的感情色彩,比起男生热衷于的网络游戏,极限运动,手工艺制品更得女生的喜欢。
(1)政策优势
9、如果你亲戚朋友送你一件DIY手工艺制品你是否会喜欢?
棱长为2的正四面体的四个顶点都在同一个
(二)创业优势分析球面上,若过该球球心的一个截面如图,则图中
三角形(正四面体的截面)的面积是.
§
8-4情境因素与消费者行为2004年3月20日答案
12.(2009枣庄一模)一个几何体的三视图如右图所示,则该几何体外接球的表面积为()
除了“漂亮女生”形成的价格,优惠等条件的威胁外,还有“碧芝”的物品的新颖性,创意的独特性等,我们必须充分预见到。
A.B.
C.D.以上都不对
答案C
可见“体验化消费”广受大学生的欢迎、喜欢,这是我们创业项目是否成功的关键,必须引起足够的注意。
人民广场地铁站有一家名为“漂亮女生”的饰品店,小店新开,10平方米不到的店堂里挤满了穿着时尚的女孩子。
不几日,在北京东路、淮海东路也发现了“漂亮女生”的踪影,生意也十分火爆。
现在上海卖饰品的小店不计其数,大家都在叫生意难做,而“漂亮女生”却用自己独特的经营方式和魅力吸引了大批的女生。
13.设正方体的棱长为,则它的外接球的表面积为()
A.B.2πC.4πD.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 中的 内切球 外接 问题 电子 教案