高中数学新人教a版必修5教案 112 余弦定理Word文件下载.docx
- 文档编号:13534618
- 上传时间:2022-10-11
- 格式:DOCX
- 页数:16
- 大小:874.34KB
高中数学新人教a版必修5教案 112 余弦定理Word文件下载.docx
《高中数学新人教a版必修5教案 112 余弦定理Word文件下载.docx》由会员分享,可在线阅读,更多相关《高中数学新人教a版必修5教案 112 余弦定理Word文件下载.docx(16页珍藏版)》请在冰豆网上搜索。
正弦定理的内容是什么?
你能用文字语言
、数学语言叙述吗?
你能用哪些方法证明呢?
正弦定理:
在一个三角形中各边和它的对边的正弦比相等,即:
,其中
为三角形外接圆的直
径。
说明:
正弦定理说明同一个三角形中,边与它所对角的正弦成正比,且比例系数为同一正数,即存在正数
,使
。
2,运用正弦定理可以解决一些怎样的解三角形问题呢?
由
,可以解决“已知两角及其一边可以求其他边。
”“已知两边及其一边的对角可以求其他角。
”等解三角形问题。
3,思考:
如图,在
中,已知
,求
即
本题是“已知三角形的两边及它们的夹角,求第三边。
”的解三角形的问题。
本题能否用正弦定理求解?
困难:
因为角
未知,较难求
二、类比探究理性演绎
(一)类比探究
当一个三角形的两边和它们的夹角确定后,那么第三边也是确定不变的值,也就是说角
的对边随着角
的变化而变化。
当
一定,
变化时,
可以认为是
的函数,
时,
(勾股定理),为方便起见,考虑
关于
的函数,记作
,即
怎样变化?
考虑两种极端情况:
时,则
;
我们比较三种情形的异、同点:
相同点:
都含有
;
不同点:
的系数不同;
猜想:
的系数
与
之间存在什么对应
关系呢?
那么就得到了当角
为三个特殊角时的公式:
,这个公式是不是满足任意三角形呢?
凭感觉上述公式应该满足任意三角形,但是我们应该给出严格的证明。
(二)理性演绎
同学们来考虑,证明恒等式通常采用什么思考方法?
这样的结构我们在什么地方遇到过?
证明:
三、完善知识剖析升华
(一)完善知识
(1)余弦定理:
在
中,
则:
(第一种形式)
(2)语言表述:
三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍。
(3)变形:
(第二种形式)
(二)剖析升华
(1)余弦定理与正弦定理一样,也是任何三角形边角之间存在的共同规律,余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.
(2)等式
含有四个量
,从方程的角度看,已知其中三个量,总可以求出第四个量。
(3)根据已知量与未知量的性质可以知道,余弦定理可以解决有关三角形的哪些问题呢?
利用余弦定理及推论可以解决以下两类三角形的问题:
①已知三边求三角形的三个角;
②已知两边及其夹角求三角形的其他边与角。
这两种类型问题在有解时都只有一个解,把“边、边、边”和“边、角、边”判定三角形全等的定理从数量化的角度进行刻画,使其变成了可计算的公式。
(4)从余弦定理和余弦函数的性质可知:
在一个三角形中,如果两边的平方和等于第三边的平方,那么第三边所对的角是直角;
如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角;
如果两边的平方和小于第三边的平方,那么第三边所对的角是钝角;
四、例题示范迁移运用
(一)例题示范
例1:
,求这个三角形的最大角。
解:
∵
,
∴这个三角形的最大角是
所以这个三角形的最大角是
引申:
已知三角形三边长为
,怎样判断
是锐角三角形、直角三角形还是钝角三角形?
例2:
及
根据余弦定理可知:
∴
又
思考:
你可以用平面几何知识求解本题吗?
分析:
,过
作
于
,则
例3:
如图所示,有两条直线
和
相交成
角,交点是
,甲、乙两人同时从点
分别沿
方向出发,速度分别是
时后两人相距多远(结果精确到
)?
经过
时,甲到达点
,乙到达点
,问题转化为在
中,己知
的长。
时后,甲到达点
,依余弦定理,知:
答:
时后两人相距约
例4:
下图是公元前约
年古希腊数学家泰特托斯用来构造无理数
的图形。
试计算图中线段
的长度及
的大小(长度精确到
,角度精确到
)。
解
:
因为
所以
你还能用其他方法求线段
的大小吗?
(二)、迁移运用
1、在
,则三角形为(C
)
A.直角三角形B.锐角三角形
C.等腰三角形D.等边
三角形
2、在
。
(
)
3、在
,判断
的类型。
(钝角三角形)
4、平行四边形两条邻边的长分别是
它们的夹角是45°
求这个平行四边形的两条对角线长与它的面积.(
五、归纳小结反思拓展
(一)归纳小结
1、余弦定理是任何三角形边角之间存在的共同规律,余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
能否用余弦定理证明勾股定理呢?
2、余弦定理有两个基本应用:
一是已知三边求三角,二是已知两边及他们的夹角求第三边。
3、余弦定理和正弦定理
是同一三角形的约束条件的不同表现形式,在本质上应该是一致的。
(二)反思拓展
1、余弦定
理和正弦定理反映了同一三角形边、角之间的的度量关系,本质上时一致的.你能证明这两个定理时等价的吗?
2、总结解三角形的方法:
已知三角形边角中哪三个量,有唯一解或多解或无解?
分别用什么方法?
六、作业
1、P51练习第1、2题;
2、习题2--1A组第3、4题.
七、资料延拓
一、余弦定理的证明方法
1、平面几何法
中,设
另外,当
为钝角时也可证得上述结论,当
为直角时,
也符合上述结论。
2、坐标法
二、三角形中的射影定理的证明
,则:
2、向量法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学新人教a版必修5教案 112 余弦定理 高中数学 新人 必修 教案 余弦 定理