高考数学真题导数专题及答案Word下载.docx
- 文档编号:13529341
- 上传时间:2022-10-11
- 格式:DOCX
- 页数:19
- 大小:95.54KB
高考数学真题导数专题及答案Word下载.docx
《高考数学真题导数专题及答案Word下载.docx》由会员分享,可在线阅读,更多相关《高考数学真题导数专题及答案Word下载.docx(19页珍藏版)》请在冰豆网上搜索。
b2>3a;
(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.
5.设函数f(x)=(1﹣x2)ex.
(2)当x≥0时,f(x)≤ax+1,求a的取值范围.
6.已知函数f(x)=(x﹣)e﹣x(x≥).
(1)求f(x)的导函数;
(2)求f(x)在区间[,+∞)上的取值范围.
7.已知函数f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.
(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;
(Ⅱ)令h(x)=g(x)﹣af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.
8.已知函数f(x)=excosx﹣x.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0,]上的最大值和最小值.
9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.
(Ⅰ)求g(x)的单调区间;
(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:
h(m)h(x0)<0;
(Ⅲ)求证:
存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.
10.已知函数f(x)=x3﹣ax2,a∈R,
(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.
11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=exf(x).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)已知函数y=g(x)和y=ex的图象在公共点(x0,y0)处有相同的切线,
(i)求证:
f(x)在x=x0处的导数等于0;
(ii)若关于x的不等式g(x)≤ex在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.
12.已知函数f(x)=ex(ex﹣a)﹣a2x.
(1)讨论f(x)的单调性;
(2)若f(x)≥0,求a的取值范围.
参考答案与试题解析
1.(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)ex﹣x.
【解答】解:
(1)由f(x)=ae2x+(a﹣2)ex﹣x,求导f′(x)=2ae2x+(a﹣2)ex﹣1,
当a=0时,f′(x)=﹣2ex﹣1<0,
∴当x∈R,f(x)单调递减,
当a>0时,f′(x)=(2ex+1)(aex﹣1)=2a(ex+)(ex﹣),
令f′(x)=0,解得:
x=ln,
当f′(x)>0,解得:
x>ln,
当f′(x)<0,解得:
x<ln,
∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;
当a<0时,f′(x)=2a(ex+)(ex﹣)<0,恒成立,
综上可知:
当a≤0时,f(x)在R单调减函数,
当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;
(2)①若a≤0时,由
(1)可知:
f(x)最多有一个零点,
当a>0时,f(x)=ae2x+(a﹣2)ex﹣x,
当x→﹣∞时,e2x→0,ex→0,
∴当x→﹣∞时,f(x)→+∞,
当x→∞,e2x→+∞,且远远大于ex和x,
∴当x→∞,f(x)→+∞,
∴函数有两个零点,f(x)的最小值小于0即可,
由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,
∴f(x)min=f(ln)=a×
()+(a﹣2)×
﹣ln<0,
∴1﹣﹣ln<0,即ln+﹣1>0,
设t=,则g(t)=lnt+t﹣1,(t>0),
求导g′(t)=+1,由g
(1)=0,
∴t=>1,解得:
0<a<1,
∴a的取值范围(0,1).
方法二:
当a=0时,f′(x)=2ex﹣1<0,
x=﹣lna,
x>﹣lna,
x<﹣lna,
∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;
当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;
②当a>0时,由
(1)可知:
当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,
当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,
当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,
故f(x)没有零点,
当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,
由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,
故f(x)在(﹣∞,﹣lna)有一个零点,
假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,
由ln(﹣1)>﹣lna,
因此在(﹣lna,+∞)有一个零点.
2.(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.
【解答】
(1)解:
因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),
则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣.
则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,
所以当x0>1时,h(x0)<h
(1)=0,矛盾,故a>0.
因为当0<x<时h′(x)<0、当x>时h′(x)>0,
所以h(x)min=h(),
又因为h
(1)=a﹣a﹣ln1=0,
所以=1,解得a=1;
由
(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,
令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,
令t′(x)=0,解得:
x=,
所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,
所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,
且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,
所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,
所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,
由x0<可知f(x0)<(x0﹣)max=﹣+=;
由f′()<0可知x0<<,
所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,
所以f(x0)>f()=;
综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.
3.(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.
(1)因为函数f(x)=x﹣1﹣alnx,x>0,
所以f′(x)=1﹣=,且f
(1)=0.
所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;
当a>0时令f′(x)=0,解得x=a,
所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f(a),
又因为f(x)min=f(a)≥0,
所以a=1;
(2)由
(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,
所以ln(x+1)≤x当且仅当x=0时取等号,
所以ln(1+)<,k∈N*.
一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,
即(1+)(1+)…(1+)<e;
另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2;
从而当n≥3时,(1+)(1+)…(1+)∈(2,e),
因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,
所以m的最小值为3.
4.(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)
因为f(x)=x3+ax2+bx+1,
所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,
令g′(x)=0,解得x=﹣.
由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;
当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;
所以f′(x)的极小值点为x=﹣,
由于导函数f′(x)的极值点是原函数f(x)的零点,
所以f(﹣)=0,即﹣+﹣+1=0,
所以b=+(a>0).
因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,
所以f′(x)=3x2+2ax+b=0的实根,
所以4a2﹣12b≥0,即a2﹣+≥0,解得a≥3,
所以b=+(a≥3).
由
(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),
由于a>3,所以h(a)>0,即b2>3a;
(3)解:
由
(1)可知f′(x)的极小值为f′(﹣)=b﹣,
设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,
所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2
=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2
=﹣+2,
又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,
所以b﹣+﹣+2=﹣≥﹣,
因为a>
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 导数 专题 答案