《概率论与数理统计》第四版选做习题全解Word文档格式.docx
- 文档编号:13505446
- 上传时间:2022-10-11
- 格式:DOCX
- 页数:15
- 大小:373.57KB
《概率论与数理统计》第四版选做习题全解Word文档格式.docx
《《概率论与数理统计》第四版选做习题全解Word文档格式.docx》由会员分享,可在线阅读,更多相关《《概率论与数理统计》第四版选做习题全解Word文档格式.docx(15页珍藏版)》请在冰豆网上搜索。
(1)以继电器触点1是否闭合为条件,求A
到B之间为通路的概率.
(2)已知A到B为通路的条件下,继电器触
点3是闭合的概率.
9.进行非学历考试,规定考甲、乙两门课程,每门课考第一次未通过都允许考第二次.考生仅在课程甲通过后才能考课程乙,如两门课程都通过可获得一张资格证书.设某考生通过课程甲的各次考试的概率为,通过课程乙的各次考试的概率为,设各次考试的结果相互独立.又设考生参加考试直至获得资格证书或者不准予再考为止.以表示考生总共需考试的次数.求的分布律以及数学期望.
10.
(1)5只电池,其中有2只是次品,每次取一只测试,直到将2只次品都找到.设第2只次品在第次找到,求的分布规律(注:
在实际上第5次检测可无需进行).
(2)5只电池,其中2只是次品,每次取一只,直到找出2只次品或3只正品为止.写出需要测试的次数的分布律.
11.向某一目标发射炮弹设炮弹弹着点目标的距离为(单位:
10),服从瑞利分布,其概率密度为
若弹着点离目标不超过5时,目标被摧毁.
(1)求发射一枚炮弹能摧毁目标的概率.
(2)为使至少有一枚炮弹能摧毁目标的概率不小于0.94,问最少需要独立发射多少枚炮弹.
12.设一枚深水炸弹击沉一潜水艇的概率为,击伤的概率为,击不中的概率为.并设击伤两次也会导致潜水艇下沉.求释放4枚深水炸弹能击沉潜水艇的概率.(提示:
先求击不沉的概率.)
13.一盒中装有4只白球,8只黑球,从中取3只球,每次一只,作不放回抽样.
14.设元件的寿命(以小时计)服从指数分布,分布函数为
(1)已知元件至少工作了30小时,求它能再至少工作20小时的概率.
(2)由3个独立工作的此种元件组成一个2/3系统(参见第7题),求这一系统的寿命的概率.
15.
(1)已知随机变量的概率密度为求的分布函数.
(2)已知随机变量的分布函数为另外有随机变量试求的分布律和分布函数.
16.
(1)服从泊松分布,其分布律为
问当取何值时为最大.
(2)服从二项分布,其分布律为
17..若离散型随机变量具有分布律
12…
…
称服从取值为的离散型均匀分布.对于任意非负实数,记为不超过的最大整数.记证明服从取值为的离散型均匀分布.
18.设求的概率密度.
19.设的概率密度
求的概率密度.
20.设随机变量服从以均值为的指数分布.验证随机变量服从以参数为的几何分布.这一事实表明连续型随机变量的函数可以是离散型随机变量.
21.投掷一硬币直至正面出现为止,引入随机变量
投掷总次数.
(1)求和的联合分布律及边缘分布律.
(2)求条件概率
22.设随机变量随机变量试求和的联合分布律及边缘分布律.
23.设,是相互独立的泊松随机变量,参数分别为求给定的条件下的条件分布.
24.一教授将两篇论文分别交给两个打字员打印.以,分别表示第一篇第二篇论文的印刷错误.设,相互独立.
(1)求,的联合分布律;
(2)求两篇论文总共至多1个错误的概率.
25.一等边三角形(如图15.25)的边长为1,在三角形内随机地取点(意指随机点在三角形内均匀分布).
(1)写出随机变量的概率密度.
(2)求点的底边的距离的分布密度.
26.设随机变量具有概率密度
(1)求边缘概率密度
(2)求条件概率密度
27.设有随机变量和,它们都仅取,两个值.已知
(1)求和的联合分布密度.
(2)求的方程至少有一个实根的概率.
(3)求的方程至少有一个实根的概率.
28.某图书馆一天的读者人数,任一读者借书的概率为,各读者借书与否相互独立.记一天读者借书的人数为,求与的联合分布律.
29.设随机变量X和Y相互独立,且都服从U(0,1),求两变量之一至少为另一变量之值两倍的概率.
30.一家公司有一份保单招标,两家保险公司竞标.规定标书的保险费必须在20万元至22万元之间.若两份标书保险费相差2千或2千以上,招标公司将选择报价低者,否则就重新招标.设两家保险公司的报价是相互独立的,且都在20万至22万之间均匀分布.试求招标公司需重新招标的概率.
31.设且相互独立,求概率
.
32.NBA篮球赛中有这样的规律,两支实力相当的球队比赛时,每节主队得分与客队得分之差为正态随机变量,均值为1.5,方差为6,并且假设四节的比分差是相互独立的.问
(1)主队胜的概率有多大?
(2)在前半场主队落后5分的情况下,主队得胜的概率有多大?
(3)在第1节主队赢5分得情况下,主队得胜的概率有多大?
33.产品的某种性能指标的测量值X是随机变量,设X的概率密度为
测量误差Y~U(),X,Y相互独立,求Z=X+Y的概率密度,并验证
34.在一化学过程中,产品中有份额为杂质,而在杂质中有份额是有害的,而其余部分不影响产品的质量.设,且和相互独立,求产品中有害杂质份额的概率密度.
35.设随机变量的概率密度为
(1)求的边缘概率密度.
(2)问是否相互独立.
(3)求的概率密度
(4)求条件概率密度
(5)求条件概率
(6)求条件概率
36.设图书馆的读者借阅甲种图书的概率为,借阅乙种图书的概率为,设每人借阅甲、乙图书的行动相互独立,读者之间的行动也相互独立.
(1)某天恰有n个读者,求甲、乙两种图书中至少借阅一种的人数的数学期望.
37.某种鸟在某时间区间下蛋数为1~5只,下只蛋的概率与成正比.一个收集鸟蛋的人在时去收集鸟蛋,但他仅当鸟窝多于3只蛋时他从中取走一只蛋.在某处有这种鸟的鸟窝6个(每个鸟窝保存完好,各鸟窝中蛋的个数相互独立).
(1)写出一个鸟窝中鸟蛋只数的分布率.
(2)对于指定的一只鸟窝,求拾蛋人在该鸟窝中拾到一只蛋的概率.
(3)求拾蛋人在6只鸟窝中拾到蛋的总数的分布律及数学期望.
(4)求
(5)当一个拾蛋人在这6只鸟窝中拾过蛋后,紧接着又有一个拾蛋人到这些鸟窝中拾蛋,也仅当鸟窝
中多于3只蛋时,拾取一只蛋,求第二个拾蛋人拾得蛋数的数学期望.
38.设袋中有只白球,只黑球.在袋中取球次,每次任取一只做不放回抽样,以表示取到白球的个数,求.
39.抛一颗骰子直到所有点数全部出现为止,求所需投掷次数的数学期望.
40.设随机变量相互独立.且分别服从以为均值得指数分布.求
41.一酒吧间柜台前有6张凳子,服务员预测,若两个陌生人进来就坐的话,他们之间至少相隔两张凳子.
(1)若真有2个陌生人入内,他们随机地就坐,问服务员预言为真的概率是多少?
(2)设2个顾客是随机坐的,求顾客之间凳子数的数学期望.
42.设随机变量相互独立,且都服从又设求概率的近似值.
43.来自某个城市的长途电话呼叫的持续时间(以分计)是一个随机变量,它的分布函数是
(其中是不大于的最大整数).
(1)画出的图形.
(2)说明是什么类型的随机变量.
(3)求(提示).
44.一汽车保险公司分析一组(250人)签约的客户中的赔付情况.据历史数据分析,在未来一周中一组客户中至少提出一项索赔的客户数占10%.写出的分布,并求(即)的概率.设各客户是否提出索赔相互独立.
45.在区间随机地取一点.定义
(1)求随机变量的值域.
(2)求的分布函数,并画出它的图形.
(3)说明不是连续型随机变量,也不是离散型随机变量.
46.设是数学期望为的指数分布总体的容量为2的样本,设,试证明.
47.设总体是一个样本.分别为样本均值和样本方差,试证.
48.设总体具有概率密度:
其中为未知参数,是来自的样本,是相应的样本观察值.
(1)求的最大似然估计量.
(2)求的矩估计量.
(3)问求得的估计量是否是无偏估计量.
49.设以及为分别来自总体与的样本,且它们相互独立.均未知,试求的最大似然估计量.
50.为了探究一批存贮着的产品的可靠性,在产品投入贮存时,即在时刻时,随机地选定只产品,然后在预先规定的时刻取出来进行检测(检测时确定已失效的去掉,将未失效的继续投入贮存),今得到以下的寿命试验数据.
检测时刻(月)
区间
在的
失效数
这种数据称为区间数据.设产品寿命服从指数分布,其概率密度为
未知.
(1)试基于上述数据写出的对数似然方程.
(2)设我们可以用数值解法求得的最大似然估计值.在计算机上实现是容易的.特别,取检测
时间是等间隔的,即取验证,此时可得的最大似然估计为
.
51.设某种电子器件的寿命(以小时计)服从指数分布,概率密度为:
其中未知.从这批器件中任取只在时刻时投入独立寿命试验,试验进行到预订时间结束.此时有只器件失效,试求的最大似然估计.
52.设系统由两个独立工作的成败型元件串联而成(成败型元件只有两种状态:
正常工作或失效).元件1、元件2的可靠性分别为,它们均未知.随机地取个系统投入试验,当系统中至少有一个元件失效时系统失效,现得到以下的试验数据:
-仅元件1失效的系统数;
-仅元件2失效的系统数;
-元件1,元件2至少有一个失效的系统数;
-未失效的系统数..这里为隐蔽数据,也就是只知系统失效,但不知道是由元件1还是元件2单独失效引起的,还是由元件1,2均失效引起的,设隐蔽与系统失效的真正原因独立.
(1)试写出的似然函数.
(2)设有系统寿命试验数据试求的最大似然估计.
53.
(1)设总体具有分布律
未知,今有样本1113213221223112.试求得最大似然估计值和矩估计值.
(2)设总体服从分布,其概率密度为
其形状参数为已知,尺度参数未知.今有样本值,求的最大似然估计值.
54.
(1)设即服从对数正态分布,验证
(2)设自
(1)中总体中取一容量为的样本求的最大似然估计,此处设均为未知.
(3)已知在文学家萧伯纳的《AnIntelligentWomen’sGuideToSocialism》一书中,一个句子的单词数近似地服从对数指数分布,设及为未知.今自该书
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论与数理统计 概率论 数理统计 第四 版选做 习题