中原名校届高三联考数学文Word文件下载.docx
- 文档编号:13493414
- 上传时间:2022-10-11
- 格式:DOCX
- 页数:27
- 大小:510.33KB
中原名校届高三联考数学文Word文件下载.docx
《中原名校届高三联考数学文Word文件下载.docx》由会员分享,可在线阅读,更多相关《中原名校届高三联考数学文Word文件下载.docx(27页珍藏版)》请在冰豆网上搜索。
A.3B.7
C.9D.10
9.执行如图所示的程序框图,若输出的n的值为5,则判断框内填入的条件可以是
?
B.
C.
D.
10.已知抛物线
的焦点F到其准线的距离为2,过点E(4,0)的直线
与抛物线C交于A,B两点,则
的最小值为
B.7C.
D.9
11.已知函数
的图象在区间
上有且只有9个交点,记为
B.8C.
12.已知
,若曲线
上存在不同两点A,B,使得曲线
在点A,B处的切线垂直,则实数a的取值范围是
B.(-2,2)C.
二、填空题
13.从1,3,5,7,9中任取3个不同的数字分别作为
的概率是________.
14.设函数
,若
_________.
15.已知三棱锥P-ABC中,PA=PB=2PC=2,
是边长为
的正三角形,则三棱锥P-ABC的外接球半径为_________.
16.已知
中,
,角A、B、C所对的边分别为a、b、c,点D在边BC上,AD=l,且BD=2DC,∠BAD=2∠DAC,则
__________.
三、解答题
17.已知数列
的前n项和为
,且满足
.
(1)求
及
;
(2)若
,求
的前2n项的和
18.(本小题满分12分)
2017年10月18日上午9:
00,中国共产党第十九次全国代表大会在人民大会堂开幕.习近平代表第十八届中央委员会向大会作了题为《决胜全面建成小康社会夺取新时代中国特色社会主义伟大胜利》的报告.人们通过手机、电视等方式关注十九大盛况.某调査网站从观看十九大的观众中随机选出200人,经统计这200人中通过传统的传媒方式电视端口观看的人数与通过新型的传媒方式PC端口观看的人数之比为4:
1.将这200人按年龄分组:
第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),其中统计通过传统的传媒方式电视端口观看的观众得到的频率分布直方图如图所示.
(1)求a的值及通过传统的传媒方式电视端口观看的观众的平均年龄;
(2)把年龄在第1,2,3组的观众称为青少年组,年龄在第4,5组的观众称为中老年组,若选出的200人中通过新型的传媒方式PC端口观看的中老年人有12人,请完成下面2×
2列联表,则能否在犯错误的概率不超过0.1的前提下认为观看十九大的方式与年龄有关?
通过PC端口观看十九大
通过电视端口观看十九大
合计
青少年
中老年
附:
(其中
样本容量).
0.10
0.05
0.025
0.010
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
19.如图甲,在四边形ABCD中,
,△ABC是边长为4的正三角形,把△ABC沿AC折起到△PAC的位置,使得平面PAC丄平面ACD,如图乙所示,点O,M,N分别为棱AC,PA,AD的中点.
(1)求证:
AD丄平面PON;
(2)求三棱锥M-ANO的体积.图甲图乙
20.已知椭圆
的右焦点为F,上顶点为G,直线FG与直线
垂直,椭圆E经过点
.
(1)求椭圆E的标准方程;
(2)过点F作椭圆E的两条互相垂直的弦AB,CD.若弦AB,CD的中点分别为M,NM,证明:
直线MN恒过定点.
21.已知
.
(1)讨论
的单调性;
(2)若存在
及唯一正整数
,使得
,求a的取值范围.
22.【选修4-4:
坐标系与参数方程】
在平面直角坐标系xOy中,曲线C的参数方程为
(
为参数),在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)求曲线C的极坐标方程;
(2)若射线
与曲线C交于点0,A,与直线
交于点B,求
的取值范围.
23.【选修4-5:
不等式选讲】
已知函数
(1)若
,解不等式
(2)若对任意x∈R,恒有
,求实数a的取值范围.
高三数学(文)参考答案
1
2
3
4
5
6
7
8
9
10
11
12
B
D
A
C
1.B【解析】因为
,所以
,故选B.
2.D【解析】因为z(3-i)=1-2i,所以
,所以复数z
在复平面内对应的点为
,位于第四象限,故选D.
3.A【解析】
,故选A.
4.B【解析】由
可得
,
所以
5.C【解析】由题意知,该“堑堵”的正视图是三棱柱的底面,为等腰直角三角形,且等腰直角三角形的斜边长为4,则其面积为4,故选C.
6.C【解析】①正确,②正确,2017年10月该市接待游客人数与9月相比的增幅为
,2017年5月该市接待游客人数与4月相比的增幅为
,③错,故选C.
7.C【解析】设
,将
代入
中得,
,解得c=3,所以
,所以双曲线C的离心率
,故选C.
8.C【解析】根据题意画出可行域如图所示(图中阴影部分),由可行域可知
,设
当直线
过点A(1,2)时,z取得最大值,为9,故选C.
9.D【解析】对于选项A,由sin1>
0,sin2>
0,sin3>
0,sin4<
0,可知输出的n的值为4;
对于选项B,由cos1>
0,cos2<
0可知,输出的n的值为2;
对于选项C,由
,可知输出的n的值为3;
对于选项D,由
,可知输出的n的值为5,故选D.
10.C【解析】由抛物线C的焦点F到其准线的距离为2,得p=2,设直线
的方程为
,与
联立得
设
(当且仅当
,即
时,取等号),故选C.
11.D【解析】由
,可知
的图象关于点
对称,
由
,可得
,故选D.
12.A【解析】由
,得
,由
,则两切线斜率分别为
且
,解得
,故选A.
13.
【解析】从1,3,5,7,9中任取3个不同的数字分别作为
,所
有可能的结果有(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9),(5,7,9),共10种,满足
的结果有
(3,5,7),(3,7,9),(5,7,9),共3种,所以所求概率
14.-3或-2【解析】因为
或
15.
【解析】由题意可得PC⊥平面ABC,以PC为一条侧棱,△ABC为底面把三棱锥
P-ABC补成一个直三棱柱,则该直三棱柱的外接球就是三棱锥P-ABC的外接球,且该直三棱柱上、下底面的外接圆圆心连线的中点就是球心,因为底面外接圆的半r=1,所以三棱锥
P-ABC的外接球半径
16.
【解析】由
及∠BAD=2∠DAC,可得
由BD=2DC,令DC=x,则BD=2x,因为AD=1,在△ADC中,由正弦定理得
,在△ABD中
17.(本小题满分12分)
【解析】
(1)由
得,
.(2分)
又
以2为首项,2为公差的等差数列.
,故
.(4分)
所以当
时,
.(5分)
(2)由
(1)知
,(9分)
.(12分)
(1)由频率分布直方图可得:
10×
(0.01+0.015+a+0.03+0.01)=l,
解得a=0.035,(3分)
所以通过传统的传媒方式电视端口观看的观众的平均年龄为:
20×
0.01+30×
0.015+40×
0.035+50×
0.03+60×
0.01=41.5(6分)
(2)由题意得2×
2列联表:
28
96
124
64
76
40
160
200
(8分)
计算得
的观测值为
所以不能在犯错误的概率不超过0.1的前提下认为观看十九大的方式与年龄有关.(12分)
19.(本小题满分12分)
(1)因为△APC为正三角形,O为AC的中点,所以P0丄AC,
因为平面PAC丄平面ACD,平面PAC∩平面ACD=AC,所以PO丄平面ACD,
因为AD
平面ACD,所以PO丄AD,(3分)
因为
,AC=4,所以
,所以AD丄CD,
因为O,N分别为棱AC,AD的中点,所以ON//CD,所以ON丄AD,
因为PO∩ON=O,所以AD丄平面PON.(6分)
(2)由AD丄CD,
,,
而点O,N分别是棱AC,AD的中点,所以
由△ACP是边长为4的等边三角形,可得
即点P到平面ACD的距离为
又M为PA的中点,所以点M到平面ANO的距离为
故
20.(本小题满分12分)
(1)因为直线FG与直线
垂直,所以
(O为坐标原点),即
,(2分)
因为点
在椭圆E上,所以
所以椭圆E的标准方程为
(2)当直线AB,CD的斜率都存在时,
设直线AB的方程为
,则直线CD的方程为
.(6分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中原 名校 三联 数学