精校版天津理数高考试题文档版含答案Word下载.docx
- 文档编号:13464174
- 上传时间:2022-10-10
- 格式:DOCX
- 页数:25
- 大小:471.21KB
精校版天津理数高考试题文档版含答案Word下载.docx
《精校版天津理数高考试题文档版含答案Word下载.docx》由会员分享,可在线阅读,更多相关《精校版天津理数高考试题文档版含答案Word下载.docx(25页珍藏版)》请在冰豆网上搜索。
(A)
(B)
(C)
(D)
(2)设变量x,y满足约束条件
则目标函数
的最大值为
(A)6(B)19(C)21(D)45
(3)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为
(A)1(B)2(C)3(D)4
(4)设
,则“
”是“
”的
(A)充分而不必要条件
(B)必要而不充分条件
(C)充要条件
(D)既不充分也不必要条件
(5)已知
,则a,b,c的大小关系为
(B)
(C)
(D)
(6)将函数
的图象向右平移
个单位长度,所得图象对应的函数
(A)在区间
上单调递增(B)在区间
上单调递减
(C)在区间
上单调递增(D)在区间
(7)已知双曲线
的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线同一条渐近线的距离分别为
和
,且
,则双曲线的方程为
(A)
(B)
(D)
(8)如图,在平面四边形ABCD中,
.若点E为边CD上的动点,则
的最小值为
(B)
(C)
第Ⅱ卷
1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2.本卷共12小题,共110分。
二.填空题:
本大题共6小题,每小题5分,共30分。
(9)i是虚数单位,复数
.
(10)在
的展开式中,
的系数为.
(11)已知正方体
的棱长为1,除面
外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥
的体积为.
(12)已知圆
的圆心为C,直线
(
为参数)与该圆相交于A,B两点,则
的面积为.
(13)已知
的最小值为.
(14)已知
,函数
若关于
的方程
恰有2个互异的实数解,则
的取值范围是.
三.解答题:
本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
(15)(本小题满分13分)
在
中,内角A,B,C所对的边分别为a,b,c.已知
(I)求角B的大小;
学科*网
(II)设a=2,c=3,求b和
的值.
(16)(本小题满分13分)
已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;
(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.
(17)(本小题满分13分)
如图,
且AD=2BC,
且EG=AD,
且CD=2FG,
,DA=DC=DG=2.
(I)若M为CF的中点,N为EG的中点,求证:
;
(II)求二面角
的正弦值;
学.科网
(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°
,求线段DP的长.
(18)(本小题满分13分)
设
是等比数列,公比大于0,其前n项和为
是等差数列.已知
(I)求
的通项公式;
(II)设数列
的前n项和为
(i)求
(ii)证明
(19)(本小题满分14分)
设椭圆
(a>
b>
0)的左焦点为F,上顶点为B.已知椭圆的离心率为
,点A的坐标为
(I)求椭圆的方程;
(II)设直线l:
与椭圆在第一象限的交点为P,且l与直线AB交于点Q.
若
(O为原点),求k的值.
(20)(本小题满分14分)
已知函数
,其中a>
1.
(I)求函数
的单调区间;
(II)若曲线
在点
处的切线与曲线
处的切线平行,证明
(III)证明当
时,存在直线l,使l是曲线
的切线,也是曲线
的切线.
参考答案:
一、选择题:
本题考查基本知识和基本运算.每小题5分,满分40分.
(1)B
(2)C(3)B(4)A
(5)D(6)A(7)C(8)A
二、填空题:
本题考查基本知识和基本运算.每小题5分,满分30分.
(9)4–i(10)
(11)
(12)
(13)
(14)
三、解答题
(15)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分.
(Ⅰ)解:
在△ABC中,由正弦定理
,可得
,又由
,得
,即
.又因为
,可得B=
.
(Ⅱ)解:
在△ABC中,由余弦定理及a=2,c=3,B=
,有
,故b=
由
.因为a<
c,故
.因此
所以,
(16)本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.学.科网
由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.
(Ⅱ)(i)解:
随机变量X的所有可能取值为0,1,2,3.
P(X=k)=
(k=0,1,2,3).
所以,随机变量X的分布列为
X
1
2
3
P
随机变量X的数学期望
(ii)解:
设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;
事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=
所以,事件A发生的概率为
(17)本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.
依题意,可以建立以D为原点,分别以
的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,
,1),N(1,0,2).
(Ⅰ)证明:
依题意
=(0,2,0),
=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则
即
不妨令z=–1,可得n0=(1,0,–1).又
=(1,
,1),可得
,又因为直线MN
平面CDE,所以MN∥平面CDE.
依题意,可得
=(–1,0,0),
=(0,–1,2).
设n=(x,y,z)为平面BCE的法向量,则
不妨令z=1,可得n=(0,1,1).
设m=(x,y,z)为平面BCF的法向量,则
不妨令z=1,可得m=(0,2,1).
因此有cos<
m,n>
=
,于是sin<
所以,二面角E–BC–F的正弦值为
(Ⅲ)解:
设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得
易知,
=(0,2,0)为平面ADGE的一个法向量,故
由题意,可得
=sin60°
,解得h=
∈[0,2].
所以线段
的长为
(18)本小题主要考查等差数列的通项公式,等比数列的通项公式及前n项和公式等基础知识.考查等差数列求和的基本方法和运算求解能力.满分13分.
(I)解:
设等比数列
的公比为q.由
可得
因为
,故
设等差数列
的公差为d,由
从而
故
所以数列
的通项公式为
,数列
(II)(i)由(I),有
(ii)证明:
(19)本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.
设椭圆的焦距为2c,由已知知
,又由a2=b2+c2,可得2a=3b.由已知可得,
,由
,可得ab=6,从而a=3,b=2.
所以,椭圆的方程为
设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>
y2>
0,故
,而∠OAB=
.由
,可得5y1=9y2.
由方程组
消去x,可得
.易知直线AB的方程为x+y–2=0,由方程组
.由5y1=9y2,可得5(k+1)=
,两边平方,整理得
,解得
,或
所以,k的值为
(20)本小题主要考查导数的运算、导数的几何意义、运用导数研究指数函数与对数函数的性质等基础知识和方法.考查函数与方程思想、化归思想.考查抽象概括能力、综合分析问题和解决问题的能力.满分14分.
由已知,
令
,解得x=0.
由a>
1,可知当x变化时,
的变化情况如下表:
x
+
极小值
所以函数
的单调递减区间
,单调递增区间为
(II)证明:
,可得曲线
处的切线斜率为
因为这两条切线平行,故有
两边取以a为底的对数,得
,所以
(III)证明:
曲线
处的切线l1:
处的切线l2:
要证明当
的切线,只需证明当
时,存在
,使得l1和l2重合.学*科网
即只需证明当
时,方程组
有解,
由①得
,代入②,得
.③
因此,只需证明当
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精校版 天津 高考 试题 文档 答案