新人教版七上第二章整式全部教案.docx
- 文档编号:1341204
- 上传时间:2022-10-21
- 格式:DOCX
- 页数:27
- 大小:110.56KB
新人教版七上第二章整式全部教案.docx
《新人教版七上第二章整式全部教案.docx》由会员分享,可在线阅读,更多相关《新人教版七上第二章整式全部教案.docx(27页珍藏版)》请在冰豆网上搜索。
新人教版七上第二章整式全部教案
第二章整式的加减
第1课时:
整式
(1)
教学内容:
教科书第54—56页,2.1整式:
1.单项式。
教学重点和难点:
重点:
难点:
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、列代数式
(1)若正方形的边长为a,则正方形的面积是;
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;
(3)若x表示正方形棱长,则正方形的体积是;
(4)若m表示一个有理数,则它的相反数是;
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。
让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
)
2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:
单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:
判断下列各代数式哪些是单项式?
(1);
(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。
以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
4.例题:
例1:
判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
x+1;;πr2;-a2b。
答:
不是,因为原代数式中出现了加法运算;不是,因为原代数式是1与x的商;
是,它的系数是π,次数是2;是,它的系数是-,次数是3。
例2:
下面各题的判断是否正确?
-7xy2的系数是7;-x2y3与x3没有系数;-ab3c2的次数是0+3+2;
-a3的系数是-1;-32x2y3的次数是7;πr2h的系数是。
通过其中的反例练习及例题,强调应注意以下几点:
圆周率π是常数;
当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
单项式次数只与字母指数有关。
5.游戏:
规则:
一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。
)
6.课堂练习:
课本p56:
1,2。
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。
四、课堂作业:
课本p59:
1,2。
板书设计:
《单项式》
1.单项式的定义:
2.例1:
………例2:
…………
……………………………………………………
……………………………………………………
学生练习:
…………………………………………………………
…………………………………………………………………………
…………………………………………………………………………
教学后记:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。
为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。
第2课时:
整式
(2)
教学内容:
教科书第56—59页,2.1整式:
2.多项式。
教学目标和要求:
教学重点和难点:
重点:
难点:
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.列代数式:
(1)长方形的长与宽分别为a、b,则长方形的周长是;
(2)某班有男生x人,女生21人,则这个班共有学生人;
(3)图中阴影部分的面积为_________;
(4)鸡兔同笼,鸡a只,兔b只,则共有头个,脚只。
(由于本课的主题是多项式,通过列代数式引入多项式,既是对前面知识的回顾,又由此导入新课,既符合学生的认知水平,又能为学生学习新知提供丰富的素材。
)
2.观察以上所得出的四个代数式与上节课所学单项式有何区别。
(1)2(a+b);
(2)21+x;(3)a+b;(4)2a+4b。
(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力。
通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充。
)
二、讲授新课:
1.多项式:
板书由学生自己归纳得出的多项式概念。
上面这些代数式都是由几个单项式相加而成的。
像这样,几个单项式的和叫做多项式(polynomial)。
在多项式中,每个单项式叫做多项式的项(term)。
其中,不含字母的项,叫做常数项(constantterm)。
例如,多项式有三项,它们是,-2x,5。
其中5是常数项。
一个多项式含有几项,就叫几项式。
多项式里,次数最高项的次数,就是这个多项式的次数。
例如,多项式是一个二次三项式。
注意:
(1)多项式的次数不是所有项的次数之和;
(2)多项式的每一项都包括它前面的符号。
(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想。
)
2.例题:
例1:
判断:
①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;
②多项式3n4-2n2+1的次数为4,常数项为1。
(这两个判断能使学生清楚的理解多项式中项和次数的概念,第
(1)题中第二、四项应为
-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中。
另外也有同学认为该多项式的次数为12,应注意:
多项式的次数为最高次项的次数。
)
例2:
指出下列多项式的项和次数:
(1)3x-1+3x2;
(2)4x3+2x-2y2。
解:
略。
例3:
指出下列多项式是几次几项式。
(1)x3-x+1;
(2)x3-2x2y2+3y2。
解:
略。
例4:
已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件。
解:
略。
(让学生口答例2、例3,老师在黑板上规范书写格式。
讲述例2时应特别提醒学生注意,
多项式的项包括前面的符号,多项式的次数应为最高次项的次数。
在例3讲完后插入整式的定义:
单项式与多项式统称整式(integralexpression)。
例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力。
)
通过其中的反例练习及例题,强调应注意以下几点:
6.课堂练习:
课本p59:
1,2。
①填空:
-a2b-ab+1是次项式,其中三次项系数是,二次项为,常数项为,写出所有的项。
②已知代数式2x2-mnx2+y2是关于字母x、y的三次三项式,求m、n的条件。
三、课堂小结:
①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几。
②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统。
(让学生小结,师生进行补充。
)
四、课堂作业:
课本p60:
3
板书设计:
《多项式》
1.多项式的定义:
2.例:
………例:
…………
……………………………………………………
……………………………………………………
学生练习:
…………………………………………………………
…………………………………………………………………………
…………………………………………………………………………
教学后记:
从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点。
掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性。
最后列举几个例子,与学生一起完成。
教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成。
要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识。
第3课时:
整式(3)
教学内容:
补充内容,课本64页提到这个内容
教学目的和要求:
1.理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。
2.通过尝试和交流,让学生体会到多项式升(降)幂排列的可行性和必要性。
3.初步体验排列组合思想与数学美感,培养学生的审美观。
教学重点和难点:
重点:
会进行多项式的升(降)幂排列,体验其中蕴含的数学美。
难点:
会进行多项式的升(降)幂排列,体验其中蕴含的数学美。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
请运用加法交换律,任意交换多项式x2+x+1中各项的位置,可以得到几种不同的排列方式?
在众多的排列方式中,你认为那几种比较整齐?
(以上由学生小组讨论,得出结果后,教师可投影演示,然后与全班同学共同探讨。
充分发挥学生的主体作用,让学生成为知识的发现者,感受成功的喜悦,体验其中蕴含的数学美,增强学好数学的信心。
)
由讨论发现任意交换多项式x2+x+1中各项的位置,可以得到六种不同的排列方式,在众多的排列方式中,像x2+x+1与1+x+x2这样的排列比较整齐。
二、讲授新课:
1.升幂排列与降幂排列:
这两种排列有一个共同点,那就是x的指数是逐渐变小(或变大)的。
我们把这种排列叫做升幂排列与降幂排列。
(板书课题:
升幂排列与降幂排列。
)
例如:
把多项式5x2+3x-2x3-1按x的指数从大到小的顺序排列,可以写成-2x3+5x2+3x-1,这叫做这个多项式按字母x的降幂排列。
若按x的指数从小到大的顺序排列,则写成-1+3x+5x2-2x3,这叫做这个多项式按字母x的升幂排列。
板书由学生自己归纳得出的多项式概念。
上面这些代数式都是由几个单项式相加而成的。
像这样,几个单项式的和叫做多项式(polynomial)。
在多项式中,每个单项式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 教版七上 第二 整式 全部 教案