常用紫外分光光度法测定蛋白质含量.docx
- 文档编号:1338844
- 上传时间:2022-10-20
- 格式:DOCX
- 页数:10
- 大小:24.52KB
常用紫外分光光度法测定蛋白质含量.docx
《常用紫外分光光度法测定蛋白质含量.docx》由会员分享,可在线阅读,更多相关《常用紫外分光光度法测定蛋白质含量.docx(10页珍藏版)》请在冰豆网上搜索。
常用紫外分光光度法测定蛋白质含量
6种方法测定蛋白质含量
一、微量凯氏(kjeldahl)定氮法
样品与浓硫酸共热。
含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。
经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
若以甘氨酸为例,其反应式如下:
nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3
(1)
2nh3+h2so4——(nh4)2so4
(2)
(nh4)2so4+2naoh——2h2o+na2so4+2nh3(3)
反应
(1)、
(2)在凯氏瓶完成,反应(3)在凯氏蒸馏装置中进行。
为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。
收集氨可用硼酸溶液,滴定则用强酸。
实验和计算方法这里从略。
计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白
氮即得。
如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。
二、双缩脲法(biuret法)
(一)实验原理
双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。
在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。
凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。
紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。
测定围为1-10mg蛋白质。
干扰这一测定的物质主要有:
硫酸铵、tris缓冲液和某些氨基酸等。
此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。
主要的缺点是灵敏度差。
因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。
(二)试剂与器材
1.试剂:
(1)标准蛋白质溶液:
用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。
如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。
牛血清清蛋白用h2o或0.9%nacl配制,酪蛋白用0.05nnaoh配制。
(2)双缩脲试剂:
称以1.50克硫酸铜(cuso4•5h2o)和6.0克酒石酸钾钠(knac4h4o6•4h2o),用500毫升水溶解,在搅拌下加入300毫升10%naoh溶液,用水稀释到1升,贮存于塑料瓶中(或壁涂以石蜡的瓶中)。
此试剂可长期保存。
若贮存瓶中有黑色沉淀出现,则需要重新配制。
2.器材:
可见光分光光度计、大试管15支、旋涡混合器等。
(三)操作方法
1.标准曲线的测定:
取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。
充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。
用未加蛋白质溶液的第一支试管作为空白对照液。
取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。
2、样品的测定:
取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。
注意样品浓度不要超过10mg/ml。
三、folin—酚试剂法(lowry法)
(一)实验原理
这种蛋白质测定法是最灵敏的方法之一。
过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以订购),近年来逐渐被考马斯亮兰法所取代。
此法的显色原理与双缩脲方法是相同的,只是加入了第二种试剂,即folin—酚试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。
这两种显色反应产生深兰色的原因是:
在碱性条件下,蛋白质中的肽键与铜结合生成复合物。
folin—酚试剂中的磷钼酸盐—磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰色(钼兰和钨兰的混合物)。
在一定的条件下,兰色深度与蛋白的量成正比。
folin—酚试剂法最早由lowry确定了蛋白质浓度测定的基本步骤。
以后在生物化学领域得到广泛的应用。
这个测定法的优点是灵敏度高,比双缩脲法灵敏得多,缺点是费时间较长,要精确控制操作时间,标准曲线也不是严格的直线形式,且专一性较差,干扰物质较多。
对双缩脲反应发生干扰的离子,同样容易干扰lowry反应。
而且对后者的影响还要大得多。
酚类、柠檬酸、硫酸铵、tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。
浓度较低的尿素(0.5%),硫酸纳(1%),硝酸纳(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液对显色无影响,但这些物质浓度高时,必须作校正曲线。
含硫酸铵的溶液,只须加浓碳酸钠—氢氧化钠溶液,即可显色测定。
若样品酸度较高,显色后会色浅,则必须提高碳酸钠—氢氧化钠溶液的浓度1~2倍。
进行测定时,加folin—酚试剂时要特别小心,因为该试剂仅在酸性ph条件下稳定,但上述还原反应只在ph=10的情况下发生,故当folin一酚试剂加到碱性的铜—蛋白质溶液中时,必须立即混匀,以便在磷钼酸—磷钨酸试剂被破坏之前,还原反应即能发生。
此法也适用于酪氨酸和色氨酸的定量测定。
此法可检测的最低蛋白质量达5mg。
通常测定围是20~250mg。
(二)试剂与器材
1.试剂
(1)试剂甲:
(a)10克na2co3,2克naoh和0.25克酒石酸钾钠(knac4h4o6•4h2o)。
溶解于500毫升蒸馏水中。
(b)0.5克硫酸铜(cuso4•5h2o)溶解于100毫升蒸馏水中,每次使用前,将50份(a)与1份(b)混合,即为试剂甲。
(2)试剂乙:
在2升磨口回流瓶中,加入100克钨酸钠(na2wo4•2h2o),25克钼酸钠(na2moo4•2h2o)及700毫升蒸馏水,再加50毫升85%磷酸,100毫升浓盐酸,充分混合,接上回流管,以小火回流10小时,回流结束时,加入150克硫酸锂(li2so4),50毫升蒸馏水及数滴液体溴,开口继续沸腾15分钟,以便驱除过量的溴。
冷却后溶液呈黄色(如仍呈绿色,须再重复滴加液体溴的步骤)。
稀释至1升,过滤,滤液置于棕色试剂瓶中保存。
使用时用标准naoh滴定,酚酞作指示剂,然后适当稀释,约加水1倍,使最终的酸浓度为1n左右。
(3)标准蛋白质溶液:
精确称取结晶牛血清清蛋白或g—球蛋白,溶于蒸馏水,浓度为250mg/ml左右。
牛血清清蛋白溶于水若混浊,可改用0.9%nacl溶液。
2.器材
(1)可见光分光光度计
(2)旋涡混合器
(3)秒表
(4)试管16支
(三)操作方法
1.标准曲线的测定:
取16支大试管,1支作空白,3支留作未知样品,其余试管分成两组,分别加入0,0.1,0.2,0.4,0.6,0.8,1.0毫升标准蛋白质溶液(浓度为250mg/ml)。
用水补足到1.0毫升,然后每支试管加入5毫升试剂甲,在旋涡混合器上迅速混合,于室温(20~25℃)放置10分钟。
再逐管加入0.5毫升试剂乙(folin—酚试剂),同样立即混匀。
这一步混合速度要快,否则会使显色程度减弱。
然后在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于700nm处测定各管中溶液的吸光度值。
以蛋白质的量为横座标,吸光度值为纵座标,绘制出标准曲线。
注意:
因lowry反应的显色随时间不断加深,因此各项操作必须精确控制时间,即第1支试管加入5毫升试剂甲后,开始计时,1分钟后,第2支试管加入5毫升试剂甲,2分钟后加第3支试管,余此类推。
全部试管加完试剂甲后若已超过10分钟,则第1支试管可立即加入0.5毫升试剂乙,1分钟后第2支试管加入0.5毫升试剂乙,2分钟后加第3支试管,余此类推。
待最后一支试管加完试剂后,再放置30分钟,然后开始测定光吸收。
每分钟测一个样品。
进行多试管操作时,为了防止出错,每位学生都必须在实验记录本上预先画好下面的表格。
表中是每个试管要加入的量(毫升),并按由左至右,由上至下的顺序,逐管加入。
最下面两排是计算出的每管中蛋白质的量(微克)和测得的吸光度值。
folin—酚试剂法实验表
管号12345678910
标准蛋白质00.10.20.40.60.81.0
(250mg/ml)
未知蛋白质0.20.40.6
(约250mg/ml)
蒸馏水1.00.90.80.60.40.200.80.60.4
试剂甲5.05.05.05.05.05.05.05.05.05.0
试剂乙0.50.50.50.50.50.50.50.50.50.5
每管中蛋白质的量(mg)
吸光度值(a700)
2.样品的测定:
取1毫升样品溶液(其中约含蛋白质20~250微克),按上述方法进行操作,取1毫升蒸馏水代替样品作为空白对照。
通常样品的测定也可与标准曲线的测定放在一起,同时进行。
即在标准曲线测定的各试管后面,再增加3个试管。
如上表中的8、9、10试管。
根据所测样品的吸光度值,在标准曲线上查出相应的蛋白质量,从而计算出样品溶液的蛋白质浓度。
注意:
由于各种蛋白质含有不同量的酪氨酸和苯丙氨酸,显色的深浅往往随不同的蛋白质而变化。
因而本测定法通常只适用于测定蛋白质的相对浓度(相对于标准蛋白质)。
四、改良的简易folin—酚试剂法
(一)试剂
1.试剂甲:
碱性铜试剂溶液中,含0.5nnaoh、10%na2co3、0.1%酒石酸钾和0.05%硫酸铜,配制时注意硫酸铜用少量蒸馏水溶解后,最后加入。
2.试剂乙:
与前面的基本法相同。
临用时加蒸馏水稀释8倍。
3.标准蛋白质溶液:
同基本法。
(二)操作步骤
测定标准曲线与样品溶液的操作方法与基本法相同。
只是试剂甲改为1毫升,室温放置10分钟后,试剂乙改为4毫升。
在55℃恒温水浴中保温5分钟。
用流动水冷却后,在660nm下测定其吸光度值。
改良的快速简易法,可获得与folin—酚试剂法(即lowry基本法)相接近的结果。
五、考马斯亮兰法(bradford法)
(一)实验原理
双缩脲法(biuret法)和folin—酚试剂法(lowry法)的明显缺点和许多限制,促使科学家们去寻找更好的蛋白质溶液测定的方法。
1976年由bradford建立的考马斯亮兰法(bradford法),是根据蛋白质与染料相结合的原理设计的。
这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。
这一方法是目前灵敏度最高的蛋白质测定法。
考马斯亮兰g-250染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰的位置(lmax),由465nm变为595nm,溶液的颜色也由棕黑色变为兰色。
经研究认为,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。
在595nm下测定的吸光度值A595,与蛋白质浓度成正比。
bradford法的突出优点是:
(1)灵敏度高,据估计比lowry法约高四倍,其最低蛋白质检测量可达1mg。
这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比lowry法要大的多。
(2)测定快速、简便,只需加一种试剂。
完成一个样品的测定,只需要5分钟左右。
由于染料与蛋白质结合的过程,大约只要2分钟即可完成,其颜色可以在1小时保持稳定,且在5分钟至20分钟之间,颜色的稳定性最好。
因而完全不用像lowry法那样费时和严格地控制时间。
(3)干扰物质少。
如干扰lowry法的k+、na+、mg2+离子、tris缓冲液、糖和蔗糖、甘油、巯基乙醇、edta等均不干扰此测定法。
此法的缺点是:
(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此bradford法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用g—球蛋白为标准蛋白质,以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 常用 紫外 分光光度法 测定 蛋白质 含量