第十六章二次根式导学案Word文件下载.docx
- 文档编号:13323596
- 上传时间:2022-10-09
- 格式:DOCX
- 页数:41
- 大小:566.71KB
第十六章二次根式导学案Word文件下载.docx
《第十六章二次根式导学案Word文件下载.docx》由会员分享,可在线阅读,更多相关《第十六章二次根式导学案Word文件下载.docx(41页珍藏版)》请在冰豆网上搜索。
(4)正方形的面积为
,则边长为。
思考:
,
,
等式子的实际意义.说一说他们的共同特征.
定义:
一般地我们把形如
(
)叫做二次根式,
叫做_____________。
。
1、试一试:
判断下列各式,哪些是二次根式?
哪些不是?
为什么?
2、当
为正数时
指
的,而0的算术平方根是,负数,只有非负数
才有算术平方根。
所以,在二次根式
中,字母
必须满足,
才有意义。
3、根据算术平方根意义计算:
(2) (3)
(4)
根据计算结果,你能得出结论:
,其中
4、由公式
,我们可以得到公式
=
利用此公式可以把任意一个非负数写成一个数的平方的形式。
如(
)2=5;
也可以把一个非负数写成一个数的平方形式,如5=(
)2.
练习:
(1)把下列非负数写成一个数的平方的形式:
6
0.35
(2)在实数范围内因式分解
4a
-11
(三)合作探究
例:
当x是怎样的实数时,
在实数范围内有意义?
解:
由
,得
当
时,
在实数范围内有意义。
练习:
1、
取何值时,下列各二次根式有意义?
①
②
③
2、
(1)若
有意义,则a的值为___________.
(2)若在实数范围内有意义,则
为()。
A.正数B.负数C.非负数D.非正数
3、
(1)在式子
中,
的取值范围是____________.
(2)已知
+
=0,则
_____________.
(3)已知
则
=_____________。
(四)达标测试
(一)填空题:
2、若
=,
=。
3、当x=时,代数式
有最小值,其最小值是。
4、在实数范围内因式分解:
()2=(x+)(y-)
(2)
()2=(x+)(y-)
(二)选择题:
1、一个数的算术平方根是a,比这个数大3的数为()
A、
B、
C、
D、
2、二次根式
中,字母a的取值范围是()
A、a<lB、a≤1C、a≥1D、a>1
2、已知
则x的值为
A、x>
-3B、x<
-3C、x=-3D、x的值不能确定
3、下列计算中,不正确的是()。
A、3=
B、0.5=
C、
D、
课后记:
二次根式
(2)
一、学习目标
1、掌握二次根式的基本性质:
2、能利用上述性质对二次根式进行化简.
二次根式的性质
.难点:
进行化简和计算。
(一)复习引入:
(1)什么是二次根式,它有哪些性质?
(2)二次根式
有意义,则x。
(3)在实数范围内因式分解:
()2=(x+)(y-)
1、计算:
观察其结果与根号内幂底数的关系,归纳得到:
2、计算:
3、计算:
当
(三)合作交流
1、归纳总结
将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:
2、化简下列各式:
(1)、
(2)、
(3)、
(4)、
=(
)
3、请大家思考、讨论二次根式的性质
与
有什么区别与联系。
(四)巩固练习
化简下列各式
(2)
(3)
(4)
(x<-2)
注:
利用
可将二次根式被开方数中的完全平方式“开方”出来,达到化简的目的,进行化简的关键是准确确定“a”的取值。
(五)达标测试:
A组
1、填空:
-
=_________.
(2)、
=
(3)a、b、c为三角形的三条边,则
________.
2、已知2<x<3,化简:
B组
3已知0<x<1,化简:
-
4边长为a的正方形桌面,正中间有一个边长为
的正方形方孔.若沿图中虚线锯开,可以拼成一个新的正方形桌面.你会拼吗?
试求出新的正方形边长.
5、把
的根号外的
适当变形后移入根号内,得()
A、
6、若二次根式
有意义,化简│x-4│-│7-x│。
二次根式的乘除法
二次根式的乘法
理解
·
=
(a≥0,b≥0),
(a≥0,b≥0),并利用它们进行计算和化简
掌握和应用二次根式的乘法法则和积的算术平方根的性质。
正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。
(一)复习引入
1.填空:
×
=____,
=____;
__
=___;
=___,
=___.
(二)、探索新知
1、学生交流活动总结规律.
2、一般地,对二次根式的乘法规定为
.(a≥0,b≥0反过来:
(a≥0,b≥0)
例1、计算
(3)3
2
例2、化简
(5)
巩固练习
(1)计算:
①
②5
③
(2)化简:
;
(三)、学生小组交流解疑,教师点拨、拓展
判断下列各式是否正确,不正确的请予以改正:
(1)
=4×
=4
=8
(四)展示反馈
展示学习成果后,请大家讨论:
对于
的运算中不必把它变成
后再进行计算,你有什么好办法?
1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:
即系数之积作为积的系数,被开方数之积为被开方数。
2、化简二次根式达到的要求:
(1)被开方数进行因数或因式分解。
(2)分解后把能开尽方的开出来。
1、选择题
(1)等式
成立的条件是()
A.x≥1B.x≥-1C.-1≤x≤1D.x≥1或x≤-1
(2)下列各等式成立的是().
A.4
B.5
4
=20
C.4
3
=7
D.5
(3)二次根式
的计算结果是()
A.2
B.-2
C.6D.12
2、化简:
;
(1)若
,则
=()
A.4B.2C.-2D.1
(2)下列各式的计算中,不正确的是()
A.
=(-2)×
(-4)=8
B.
C.
D.
(1)6
(-2
);
3、不改变式子的值,把根号外的非负因式适当变形后移入根号内。
(1)-3
(2)
二次根式的除法
1、掌握二次根式的除法法则和商的算术平方根的性质。
2、能熟练进行二次根式的除法运算及化简。
掌握和应用二次根式的除法法则和商的算术平方根的性质。
正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简。
(一)复习回顾
1、写出二次根式的乘法法则和积的算术平方根的性质
(1)3
(-4
)
(2)
3、填空:
规律:
______
_______
(4)
.
一般地,对二次根式的除法规定:
(a≥0,b>
0)反过来,
0)
下面我们利用这个规定来计算和化简一些题目.
(二)、巩固练习
2、化简:
1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:
即系数之商作为商的系数,被开方数之商为被开方数。
(1)被开方数不含分母;
(2)分母中不含有二次根式。
(三)拓展延伸
阅读下列运算过程:
数学上将这种把分母的根号去掉的过程称作“分母有理化”。
利用上述方法化简:
(1)
=_________(2)
=_________(3)
=________(4)
=______
(四)达标测试:
(1)计算
的结果是().
D.
(2)化简
的结果是()
A.-
B.-
C.-
D.-
用两种方法计算:
最简二次根式
1、理解最简二次根式的概念。
2、把二次根式化成最简二次根式.
3、熟练进行二次根式的乘除混合运算。
最简二次根式的运用。
会判断二次根式是否是最简二次根式和二次根式的乘除混合运算。
1、化简
(1)
=
(2)
=
(3)
=(4)
=(5)
2、结合上题的计算结果,回顾前两节中利用积、商的算术平方根的性质化简二次根式达到的要求是什么?
观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:
1.被开方数不含分母;
2.被开方数中不含能开得尽方的因数或因式.
我们把满足上述两个条件的二次根式,叫做最简二次根式.
2、化简:
(4)
2、比较下列数的大小
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十六 二次 根式 导学案