电大本博弈与决策作业14复习过程Word文件下载.docx
- 文档编号:13263634
- 上传时间:2022-10-09
- 格式:DOCX
- 页数:19
- 大小:56.22KB
电大本博弈与决策作业14复习过程Word文件下载.docx
《电大本博弈与决策作业14复习过程Word文件下载.docx》由会员分享,可在线阅读,更多相关《电大本博弈与决策作业14复习过程Word文件下载.docx(19页珍藏版)》请在冰豆网上搜索。
要求:
(1)写出剔除的步骤或顺序;
(2)画出相应的剔除线;
(3)给出最优的博弈结果。
乙
坦白
抵赖
甲
-3
-5
-1
答:
(1)对甲而言,抵赖是劣势策略,用横线划去“抵赖”所对应的行;
(2)对乙而言,抵赖是劣势策略,用竖线划去“抵赖”所对应的列;
(3)余下的策略组合是(坦白,坦白),这就是该博弈的最优结果。
[注:
步骤
(1)
(2)颠倒亦可]
百事可乐
低价
高价
可口可乐
3
1
6
5
(1)对可口可乐而言,高价是劣势策略,用横线划去“高价”所对应的行;
(2)对百事可乐而言,高价是劣势策略,用竖线划去“高价”所对应的列;
(3)余下的策略组合是(低价,低价),这就是该博弈的最优结果。
员工乙
L
M
R
员工甲
U
2
C
D
(1)对员工乙而言,策略R是明显劣势策略,用竖线划去“R”所对应的列;
(2)对员工甲而言,在员工乙剔除R策略之后,C策略是劣势策略,用横线划去“C”所对应的行;
(3)对员工乙而言,此时劣势的策略是L,用竖线划去“L”所对应的列;
(4)对员工甲而言,此时劣势的策略是D,用竖线划去“D”所对应的行;
(5)余下的策略组合是(U,M),这就是该博弈的最优结果。
三、根据优势策略下划线法找出以下博弈的纯策略纳什均衡,并指出是否存在混合策略纳什均衡。
(1)划出相应优势策略的下划线;
(2)给出最优的博弈结果。
2号厂商
X
Y
1号厂商
A
4
10
B
7
(1)下划线如图所示;
(2)只形成一个纯策略纳什均衡,即(A,X)。
(3)博弈的结果为(10,4),即1号厂商获得10单位支付,2号厂商获得4单位支付。
(4)按照纳什均衡存在性定理,这里不存在混合策略纳什均衡。
括号的数字和字母顺序不能颠倒]
(2)没有形成一个纯策略纳什均衡。
(3)按照纳什均衡存在性定理,这里还存在一个混合策略纳什均衡。
W
8
(2)形成两个纯策略纳什均衡,即(A,Y)和(B,W)。
(3)博弈的结果有两个:
(4,5),即1号厂商获得4单位支付,2号厂商获得5单位支付;
(8,6),即1号厂商获得8单位支付,2号厂商获得6单位支付。
(4)按照纳什均衡存在性定理,这里还存在一个混合策略纳什均衡。
四、在以下博弈矩阵图中找出哪一个是囚徒困境博弈,并简要解释理由。
坏心
好心
12
50
60
39
100
图1-1
110
图1-2
20
30
11
图1-3
(1)利用下划线法找出博弈的纳什均衡,如图所示。
(2)囚徒困境反映的是基于个人理性的个体最佳选择并非集体最佳选择,参与者之间会选择相互“坏心”,而且对双方而言,(好心,好心)的结果一定要比(坏心,坏心)更好。
(3)在三个博弈中,图1-1不是囚徒困境博弈,因为参与者甲在选择“好心”(即合作)策略时才能实现均衡。
图1-2所示的博弈为囚徒困境博弈,因为参与者只有在都选择“坏心”(即不合作)策略时才能实现均衡。
图1-32所示的博弈也不是囚徒困境博弈,因为对乙而言,(坏心,坏心)的结果比(好心,好心)的结果有利。
五、博弈分析
假设你所在的公司现在的发展虽然还可以,但是未来前景不容乐观,所以老板只能对一个人加薪。
如果你和你的同事之间只有一个人提出来加薪的请求,老板会考虑为提出要求的这个员工加薪,当然不会对那个没有提出来的员工加薪了。
但是假如你和你的同事两个人一起提出来要加薪,那么老板就只有选择同时辞退你们俩。
请给出这个博弈的矩阵分析图,并解释你最优的策略。
该博弈矩阵如下:
同事
要求
不要求
你
被辞退
无影响
加薪
根据下划线方法,在这个博弈中,我们可以找到两个纳什均衡,即(要求,不要求)和(不要求,要求)。
这个结果说明,你和同事只能一方提出加薪的要求才可以,同时选择要求加薪的行动只会带来最坏的结果——都被辞退。
换句话说,你要想获得福利的改进,就应该先行一步提出来加薪的要求。
而假如你看到你的同事首先选择了要求加薪的策略之后,你最好不再提出来这样的要求。
平时作业参考答案
(2)
1.不确定性:
就是指经济行为者在事先不能准确地知道自己的某种决策的结果,或者说,只要经济行为主体的一种决策的可能结果不止一种,就会产生不确定性。
2.最大期望收益法:
就是在事件结果不确定的情况下,应该选择给他带来“期望收益”最大的策略。
3.混合策略:
如果在每个给定信息下,参与者只能以某种概率选择不同地策略,就称为混合策略。
4.支付均等法:
当一个参与者在均衡中应用一个混合策略时,他所得到的支付必须与他在混合策略中所应用的每一个纯策略的支付相同。
5.子博弈:
如果从第一阶段以外的某个阶段开始的后续博弈阶段,也有初始信息集,具备进行博弈所需要的各种信息,能够自成一个博弈,我们就将这个博弈阶段称为原动态博弈的一个“子博弈”。
6.逆向归纳法:
从最后一个阶段或最后一个子博弈开始逆推上去,逐步向前倒推以求解动态博弈均衡,这就是逆向归纳法。
7.承诺:
就是对愿意与你合作的人给予回报的方式。
8.空洞威胁:
当发出威胁的博弈参与者选择威胁所宣称的行动策略时,对自己并没有好处,这就不可信了,这叫做“空洞威胁”。
二、请用最大期望收益法寻找最优策略。
(1)写出计算步骤;
(2)给出最优的策略结果。
甲乙两家企业,为了市场份额的争夺,在价格定制问题上各有两种纯策略,如图2-1所示。
两家企业都知道自己在各个策略组合下的收益情况,但是并不知道对方的收益。
假设甲采取U的概率为0.3,乙采取R的概率为0.6。
答:
(1)当乙采取R策略的可能性为0.6时,采取L策略的可能性为0.4,那么甲据此判断采取自己的策略U时所获得的可能的期望收益EU(U)=0.6×
2+0.4×
3=2.4。
甲采取自己的策略D时所获得的可能的期望收益EU(D)=0.6×
4+0.4×
1=2.8。
很显然,甲应该选择策略D,因为EU(D)>
EU(U)。
(2)当甲采取U策略的可能性为0.3时,采取D策略的可能性为0.7,那么乙据此判断采取自己的策略L时所获得的可能的期望收益EU(L)=0.3×
1+0.7×
4=3.1。
乙采取自己的策略R时所获得的可能的期望收益EU(R)=0.3×
4+0.7×
2=2.6。
很显然,乙应该选择策略L,因为EU(L)>
EU(R)。
(3)最终该博弈的结果就是(D,L),均衡的支付为(4,4)。
三、求解以下博弈的所有纳什均衡。
(2)给出所有纳什均衡策略。
曹操
华容道
其它路
关羽
-2
(1)对该博弈矩阵利用下划线法,发现没有纯策略纳什均衡。
(2)假设关羽选择华容道的概率为p,选择另外一条道的概率为1-p;
也假设曹操选择华容道的概率为q,选择另外一条道的概率为1-q。
根据支付均等法:
对关羽而言,U华容道=U其他路,即2·
q+(-2)·
(1-q)=(-2)·
q+2·
(1-q),可以得到q=1/2。
对于曹操而言,V华容道=V其他路,即(-2)·
p+1·
(1-p)=3·
p+(-1)·
(1-p),可以得到p=2/7。
该博弈的混合纳什均衡为(2/7,1/2)。
(1)对该博弈矩阵利用下划线法,发现有两个纯策略纳什均衡(A,X)和(B,Y)。
(2)假设1号厂商选择A的概率为p,选择B的概率为1-p;
也假设2号厂商选择X的概率为q,选择Y的概率为1-q。
对1号厂商而言,UA=UB,即10·
q+1·
(1-q)=4·
q+5·
(1-q),可以得到q=2/5。
对2号厂商而言,VX=VY,即10·
(1-p)=4·
p+5·
(1-p),可以得到p=2/5。
该博弈的混合纳什均衡为(2/5,2/5)。
四、请用逆向归纳法分析以下博弈的可能结果。
(1)逆向归纳法画图如图所示。
(2)可能的均衡路径为A—U,1号参与者选A,2号参与者选U,结果为(20,20),双方各得到20单位的报酬。
(3)C—Y路径上的报酬(1000,1000)远大于A—U路径上的(20,20),但是并不能成为均衡。
因为如果1号参与者选择了C,2号参与者选择Z就可以获得做大的报酬,并使1号只能获得0单位报酬。
1号参与者并不能保证2号参与者会选择Z,而且2号即使有这种保证也是不可信的。
五、寻找可信的威胁。
假如有两个博弈参与者,2号威胁1号说,假如1号参与者对他使坏心,他就会对1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电大 博弈 决策 作业 14 复习 过程